Lm358p применение в зарядном устройстве

Содержание
  1. Lm358p применение в зарядном устройстве
  2. LM358 схема включения
  3. LM358 цоколевка
  4. Аналоги LM358
  5. LM358 схема включения: неинвертирующий усилитель
  6. LM358 схема включения: мощный неинвертирующий усилитель
  7. LM358 схема включения: преобразователь напряжение — ток
  8. LM358 схема включения: преобразователь ток — напряжение
  9. LM358 схема включения: дифференциальный усилитель
  10. LM358 схема включения: дифференциальный усилитель с регулируемым коэффициентом усиления
  11. LM358 схема включения: монитор тока
  12. LM358 схема включения: преобразователь напряжение – частота
  13. Стабилизатор тока для зарядки аккумулятора — зарядное со стабилизацией тока
  14. Простое зарядное устройство стабилизатор тока из подручных материалов
  15. Сборка устройства
  16. Схема включения LM358 (N)
  17. LM358 цоколевка
  18. Технические характеристики
  19. Схемы подключения
  20. Маркировка
  21. Применение
  22. Как работать с ОУ LM358: схемы включения и практическое применение
  23. Описание микросхемы LM358
  24. Описание выводов
  25. Аналоги микросхемы
  26. Особенности включения
  27. Популярные схемы на lm358
  28. Неинвертирующий усилитель и источник опорного напряжения
  29. Генератор синусоидальных сигналов
  30. Усилитель термопары на LM358
  31. Простая схема регулятора тока
  32. Зарядное устройство на LM 358
  33. Lm358p применение в зарядном устройстве
  34. Схема зарядного для АКБ

Lm358p применение в зарядном устройстве

LM358 схема включения

Говоря операционный усилитель, я зачастую подразумеваю LM358. Так как если нету каких-то особых требований к быстродействию, очень широкому диапазону напряжений или большой рассеиваемой мощности, то LM358 хороший выбор.

Какие же характеристики LM358 принесли ему такую популярность:

  • низкая стоимость;
  • никаких дополнительных цепей компенсации;
  • одно или двуполярное питание;
  • широкий диапазон напряжений питания от 3 до 32 В;
  • Максимальная скорость нарастания выходного сигнала: 0,6 В/мкс;
  • Ток потребления: 0,7 мА;
  • Низкое входное напряжение смещения: 0,2 мВ.

LM358 цоколевка

Так как LM358 имеет в своем составе два операционных усилителя, у каждого по два входа и один выход (6 — выводов) и два контакта нужны для питания, то всего получается 8 контактов.

LM358 корпусируются как в корпуса для объемного монтажа (LM358N — DIP8), так и в корпуса для поверхностного монтажа (LM358D — SO8). Есть и металлокерамическое исполнение для особо тяжелых условий работы.
Я применял LM358 только для поверхностного монтажа – просто и удобно паять.

Аналоги LM358

Полные аналоги LM358 от разных производителей NE532, OP04, OP221, OP290, OP295, OPA2237, TA75358P, UPC358C.
Для LM358D — KIA358F, NE532D, TA75358CF, UPC358G.

Вместе с LM358 выпускается большое количество похожих операционных усилителей. Например LM158, LM258, LM2409 имеют аналогичные характеристики, но разный температурный диапазон работы.

Если диапазона 0..70 градусов не хватает, то стоит применить LM2409, однако следует учитывать что у неё диапазон питания уже:

Кстати если нужен только один операционный усилитель в компактном 5 выводном корпусе SOT23-5 то вполне можно применить LM321, LMV321 (аналоги AD8541, OP191, OPA337).
Наоборот, если нужно большое количество рядом расположенных операционных усилителей, то можно применить счетверенные LM324 в 14 выводном корпусе. Можно вполне сэкономить пространство и конденсаторы по цепям питания.

LM358 схема включения: неинвертирующий усилитель

Коэффициент усиления этой схемы равен (1+R2/R1).
Зная сопротивления резисторов и входное напряжение можно посчитать выходное:
Uвых=Uвх*(1+R2/R1).
При следующих значениях резисторов коэффициент усиления будет равен 101.

LM358 схема включения: мощный неинвертирующий усилитель

Для этой схемы коэффициент усиления по напряжению равен 10, в общем случае коэффициент усиления этой схемы равен (1+R1/R2).
Коэффициент усиления по току определяется соответствующим коэффициентом транзистора VT1.

LM358 схема включения: преобразователь напряжение — ток


Выходной ток этой схемы будет прямо пропорционален входному напряжению и обратно пропорционален значению сопротивления R1.
I=Uвх/R, [А]=[В]/[Ом].
Для сопротивления резистора R1 равного 1 Ом, каждый Вольт входного напряжения будет давать, один Ампер выходного напряжения.

LM358 схема включения: преобразователь ток — напряжение


А эта схема нужна для преобразования малых токов в напряжение.
Uвых = I * R1, [В]= [А]*[Ом].
Например при R1 = 1 МОм, ток через 1 мкА, превратиться в напряжение 1В на выходе DA1.

LM358 схема включения: дифференциальный усилитель

Эта схема дифференциального усилителя с высоким входным сопротивление, может применятся для измерения напряжении источников с высоким внутренним сопротивлением.
При условии, что R1/R2=R4/R3, выходное напряжение можно рассчитать как:
Uвых = (1+R4/R3)(Uвх1 – Uвх2).
Коэффициент усиления соответственно будет равен: (1+R4/R3).
Для R1 = R2 = R3 = R4 = 100 кОм, коэффициент усиления будет равен 2.

LM358 схема включения: дифференциальный усилитель с регулируемым коэффициентом усиления

Стоит отметить, что предыдущая схема не позволяет подстраивать коэффициент усиления, так как требует одновременного изменения двух резисторов. Если необходимо иметь возможность регулировки коэффициента усиления в дифференциальном усилителе, то можно воспользоваться схемой на трех операционных усилителях.
В данной схеме подстройка коэффициента усиления осуществляется за счет регулировки резистора R2.
Для этой схемы нужно соблюсти условия равенства значений сопротивлений резисторов: R1 = R3 и R4 = R5 = R6 = R7.
Тогда коэффициент усиления будет равен: (1+2*R1/R2).
Uвых = (1+2*R1/R2)(Uвх1 – Uвх2).

LM358 схема включения: монитор тока

Еще одна интересная схема позволяющая измерять ток в питающем проводе и состоящая из шунта R1, операционного усилителя npn – транзистора и двух резисторов.

  • DA1 – LM358;
  • R1 – 0,1 Ом;
  • R2 – 100 Ом;
  • R3 – 1 кОм.

Напряжение питания операционного усилителя должно быть минимум на 2 В, выше напряжения нагрузки.

LM358 схема включения: преобразователь напряжение – частота

И напоследок схема которую можно использовать в качестве аналого-цифрового преобразователя. Нужно только подсчитать период или частоту выходных сигналов.

  • C1 – 0,047 мкФ;
  • DA1 – LM358;
  • R1 – 100 кОм;
  • R2 – 50 кОм;
  • R3,R4,R5 – 51 кОм;
  • R6 — 100 кОм;
  • R7 — 10 кОм.

Навигация по записям

26 thoughts on “ LM358 схема включения ”

Наверное — это самый распространенный операционник. Как раз тот случай, когда усредненные характеристики детали, делают ее востребованной в любых стандартных устройствах. Возможность сносно работать в различных режимах позволяет использовать в УМЗЧ, параметрических и импульсных стабилизаторах, генераторах, модуляторах, регуляторах и т.д. Из-за надежности, обусловленной простотой, используется и в бытовой, и в промышленной, и, даже, военной технике.

Востребованной ее делает крайне низкая цена, я их брал по 3,5 руб. Взял сотню, теперь леплю эти «семечки» куда только можно. Кроме звукоусиливающей аппаратуры, конечно, где посредственные частотные и скоростные параметры накладывают серьезные ограничения на использование LM358. Что любопытно, у этого простенького ОУ довольно большое допустимое синфазное напряжение, что позволяет использовать его в качестве усилителя напряжения с шунта в «горячем» проводе источника питания с выходным напряжением до 27 вольт. Как на девятом рисунке в публикации. Только с напряжением смещения у него не очень, поэтому приходится сопротивление шунтов выбирать побольше, компенсируя низкую точность операционного усилителя. Но что тут поделать? Инструментальный усилитель за 3 рубля не купишь…

Можно и в звуковых усилителях использовать, но, не в виде предварительного каскада усиления, конечно, тут полностью поддерживаю. Ресиверы, вообще одно из немногих устройств, в каскады усиления которых, современные технологии не добрались. Понимаю, что сейчас кругом МП3, но после качественного ЦАП, микросхемам делать уже нечего. Если мы говорим о верном Hi-Fi (High-Fidelity) стерео-звуке, конечно. В аппаратуре такого уровня, даже применение вакуумных радиоламп до сих пор актуально и востребовано.

Не подскажете пару радиосхем на вакуумных лампах. Лампы есть, а вот схем не могу найти, даже в интернете. Помню, в детстве, был у меня катушечный магнитофон «Астра», так в нём целых три лампы стояло, звук был громкий, но качество конечно оставляло желать лучшего.

Качество звука было неважным — из-за плохого качества магнитных носителей и звукоснимателей, а не из-за усиления НЧ! Усилитель только подчеркивал эти недостатки. Плюс «звукоизлучатели» вносили свою лепту. Да и усилитель-усилителю рознь, несмотря на использованные в нем элементы. Многие старые магнитофоны, по вышеуказанной причине, оснащались изначально некачественным, упрощенным выходным каскадом.
А какие у вас лампы? Их разнообразие побольше, чем у транзисторов, особенно биполярных. Схемы найти трудно, но не невозможно, сложнее — под определенные лампы, особенно, если это две ГУ-50.

Читайте также:  Акселерометр в телефоне что это такое

Схемы на радиолампах в большом количестве имеются в книгах по радиоэлектронике, например есть знаменитая книга «Юный радиолюбитель» авторы Борисов, В.Г. http://tehosnova.ru/knigi/elektronika/borisov_vg_uniy_radiolubitel_7_izd_p.zip

не прикалывайтесь, в стандарт hi-fi влазят почти все современные звуковоспроизводящие устройства)

Интересно, что цоколи большинства сдвоенных (стерео ) операционных усилителей одинаковы. Не исключено, что это некий промышленный стандарт.

Стандартизация — основа взаимозаменяемости, не следовать ей — свернуть на путь ведущий к невостребованности. Позволить себе такое, может далеко не каждый, к чему это приведет, можно представить на примере бывшего СССР. И соответствие однотипных устройств должно быть максимальным: схематично, параметрично и метрично. Это закон, причем, закон не джунглей, а цивилизации.

Greg, сколько Вам лет? Что Вы знаете о стандартизации в СССР и до него?

А что знаете Вы?Весьма интересно …

http://youtu.be/Emzo-da5DQc пример взаимозаменяемости импорт совок

Данную микросхему широко используют, как в промышленности так и среди радиолюбителей. Она проверена работает без проблем. Может автор дополнит и другими интересными схемами применение данной микросхемы.
Подскажите предельное напряжении +U нагр в (LM358 схeмa включeния: монитор токa) измерение тока.

Максимальное синфазное напряжение для LM358 составляет 28 вольт при напряжении питания ОУ 30 вольт. Синфазное напряжение — напряжение приложенное одновременно к обоим входам ОУ относительно общего провода. В данной схеме входное синфазное напряжение это и есть +Uнагр, которое прикладывается к входам LM358 через резисторы R2 и R1. Т.е. Uнагр может быть величиной до 28 вольт.

Я LM358 использовал для усиления напряжения с шунта в импульсном стабилизаторе тока и напряжения. Схема самая банальная — операционный усилитель в дифференциальном включении с двуполярным питанием. Работает прекрасно, напряжение на выходе практически не зависит от напряжения на выходе блока питания, и строго пропорционально напряжению на шунте. Напряжение с выхода подавал на микроамперметр (индикатор тока) и на один из управляющих выводов TL494.

«операционный усилитель в дифференциальном включении с двуполярным питанием» Здравствуйте, а можно попросить у вас схемку. Я собирал аналогично, но где то ошибки, не могу найти, не работает. вернее с однополярным работает, с двухполярным нет.

Datasheet на семейство ОУ LM158, LM258, LM358 и LM2904 от Texas Instruments.

На микросхеме LM358 можно легко собрать приемник прямого детектирования. Например, если прямой вход LM358 соединить с диодным детектором на двух ГИ401А, включенных по схеме с удвоением напряжения, а на выходе усилителя добавить последовательную цепочку из сопротивления и светодиода, то можно получить простенький индикатор электромагнитного поля. Собранный по такой схеме индикатор с проволочной антенной всего 10 см, пеленговал мобильный телефон, уже с расстояния 5 метров.
Неплохие результаты LM358 показывает и в микрофонном усилителе, но хотелось бы знать ваше мнение насчет использования такой микросхемы в эквалайзере.

В эквалайзерах, особенно графических, данная микросхема демонстрирует тоже довольно неплохие параметры, как и в параметрических, в принципе. Тут есть один, небольшой, нюанс. Если использовать квадратичный фильтр, то как раз получается один корпус на полосу. Если же фильтр биквадратный, то придется ставить уже два корпуса. Тут есть смысл задуматься над применением счетверенной LM324. Но LM358, на мой взгляд, предпочтительней из-за большей чувствительности. Да и вдруг вам захочется кубических фильтров.

OP221 это не полный аналог LM358

Greg подскажите схему, чтобы отключало солнечную батарею от аккумулятора при 14,4 вольта, если можно попроще на выходе чтобы стояло реле, , я начинающий радиолюбитель. Спасибо!

Отличная статья. Очень помогло. Большое спасибо!

Вопрос по «LM358 схема включения: преобразователь напряжение – частота»
Подскажите пожалуйста,будет ли эта схема работать от значения 0 гц?
И если да,то приблизительно какое максимальное значение частоты получится
на выходе.
И еще:как сформировать значение Uпит./2?Можно ли применить делитель на двух резисторах?

Да, можно. Даже нужно.

Болтуны! Сх напр-частота не работает. Говорите о чем угодно, пустой базар. Ни какой конкретики. Вы ее сами то собирали!? Как минимум первый ОУ поменять входы (т.е. перевернуть ОУ относит гориз плоскости). Или где то ошибка, но в таком виде не работает. Давайте комментируйте, но тлк по делу.

На DA1.1, R1, R3, R4 собран интегратор, так что схема включения правильная. DA1.2 нужен для обратной связи, чтобы из интегратора получить мультивибратор.

Стабилизатор тока для зарядки аккумулятора — зарядное со стабилизацией тока

Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет.

Простое зарядное устройство стабилизатор тока из подручных материалов

Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.

Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя (ОУ) без обратной связи с большим коэффициентом усиления.

В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM358. На изображении видно, что она имеет:

  • два входа (инвертирующий и неинвертирующий);
  • один выход.

Задача LM358 состоит в том, чтобы сбалансировать параметры на выходе путём увеличения или уменьшения напряжения на входах.

Зарядное устройство или простой стабилизатор – это прибор, который:

  • сглаживает пульсации сети;
  • поддерживает прямую линию графика тока на одном уровне.

Как это осуществляется? В нашем случае на один вход подаётся опорное напряжение, задаваемое с помощью стабилитрона. Второй вход подключен после шунта, предназначенного для роли датчика тока. Когда подключается к выходу разряженный аккумулятор, в цепи возрастает ток и соответственно возникает падение напряжения на низкоомном резисторе. На микросхеме LM358 появляется разность напряжений между двумя входами. Устройство стремится сбалансировать эту разность, тем самым увеличивая параметры на выходе.

Глядя на схему мы видим, что на выход подключен полевой транзистор, который управляет нагрузкой. По мере заряда аккумулятора на клеммах устройства начинает повышаться напряжение, следовательно, начинает расти оно и на одном из входов ОУ. Возникает разность напряжений между входами, которую ОУ пытается выровнять путём уменьшения напряжения на выходе, тем самым уменьшая ток в основной цепи.

В итоге, аккумулятор заряжается до нужного напряжения, то есть выставленного значения на клеммах зарядного устройства. Падение напряжения на резисторе R3 становится минимальным, либо его не будет вообще. При выравнивании напряжения на входах транзистор закрывается, тем самым отключая нагрузку от зарядного устройства.

Особенностью данной схемы является то, что она позволяет ограничивать ток заряда. Делается это с помощью переменного резистора, который включён последовательно в делитель. И собственно поворачивая ручку этого резистора можно изменять параметры на одном из входов. Возникающую разность опять же выравнивают путём увеличения либо уменьшения параметров.

Универсальных схем не бывает. Кого-то интересует вопрос увеличения тока нагрузки. Например, что нужно поменять в схеме для 15 А? Необходимо будет поставить переменник не 5, а 10 кОм. Так же сделав предварительный расчёт и заменив соответствующие элементы, можно запросто настроить схему под свои нужды.

Сборка устройства

Конечно, интересно посмотреть на готовое самодельное изделие, тогда приступим к сборке устройства. В интернет-магазинах существует много компактных плат под эту схему. Стоимость деталей для сборки данного стабилизатора напряжения обойдётся менее двухсот рублей. Если покупать готовый стабилизатор напряжения, придется заплатить в несколько раз больше.

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

Читайте также:  Акг 01 автомат контроля герметичности

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.

Схема включения LM358 (N)

Микросхема LM358 как написано в его DataSheet является универсальным решением, так как схема включения большинства популярных устройств весьма проста, в случаях отсутствия жестких требований к высокому быстродействию, рассеиваемой мощности и нестандартному питающему напряжению. Небольшая стоимость, отсутствие необходимости подключения дополнительных элементов частотной коррекции, возможность использования во всем диапазоне стандартных питающих напряжений (до +32В) и низкий потребляемый ток, делают его кандидатом номер один для электронных проектов с ОУ.

LM358 цоколевка

LM358 состоит из двух ОУ, каждый имеет по 4 вывода, имеющих свое назначение. Всего получается 8 контактов. Производятся в нескольких видах корпусного исполнения, для объемного DIP и поверхностного монтажа на плату SO. Так же могут встречается в усовершенствованных корпусах SOIC, VSSOP, TSSOP.

Назначение контактов для всех видов корпусов совпадает: 2,3, 5,6, — входы, 1,7 – выходы, 4 – минус источника питания, 8 – плюс источника питания.

Технические характеристики

Ниже указаны предельные допустимые значения условий эксплуатации для диапазона рабочих температур окружающей среды TA от 0 до +70 °C, если не указано иное.

Основные электрические характеристики, при температуре окружающей среды TA = 25 °C.

Рекомендуемые условия эксплуатации в диапазоне рабочих температур окружающей среды, если не указано иное:

Подверженность устройства повреждению от электростатического разряда (ESD):

Также у данного устройства есть тепловые характеристики:

Схемы подключения

Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.

Схема в мощном неинвертирующим усилителе.

Преобразователь напряжения — ток.

Схема с дифференциальным усилителем.

Неинвертирующий усилитель средней мощности.

Аналогами LM358 можно считать микросхемы в которых указываются идентичные характеристики. К таким относятся: LM158, LM258, LM2904, LM2409. Эти микросхемы незначительно отличаются от описываемой своими тепловыми параметрами и подойдут в качестве замены для большинства проектов.

Для ее замены можно использовать: GL 358, NE 532, OP 04, OP 221, OP 290, OP 295, OPA 2237, TA7 5358-P, UPC 358C, AN 6561, CA 358E, HA 17904. Отечественные аналоги lm358: КР 1401УД5, КР 1053УД2, КР 1040УД1.

Для замены также может подойти аналог по электрическим параметрам, но уже c четырьмя ОУ в одной микросхеме — LM324.

Маркировка

Префикс LM сначала использовался при маркировке общего назначения компанией National Semiconductor. Цифры “358” это ее серийный номер. В 2011 году эта компания была приобретена другим производителем электроники Texas Instruments. С этого года префикс “LM” является кодом производителя Texas Instruments, но несмотря на это, этот код используют и другие производители при маркировке своей продукции.
Микросхемы LM358, LM358-N и LM358-P имеют одинаковые технические параметры. У большинства компаний-производителей символами “-N” , “-P” обозначаются пластиковые корпуса PDIP.

В технических описания встречается такие виды: LM358A, LM358B, LM358BA. Так указывается версии следующего поколения промышленного стандарта LM358. Устройства «B» могут быть доступны в более современных микрокорпусах TSOT и WSON.

Применение

Lm358 широко используется в:

  • устройствах типа «мигающий маяк»;
  • блоках питания и зарядных устройствах;
  • схемах управления двигателем;
  • материнских платах;
  • сплит системах внутреннего и наружного применения;
  • бытовой технике: посудомоечные, стиральные машины, холодильные установки;
  • различных видах инверторов;
  • источниках бесперебойного питания;
  • контроллерах и др.

Возможности применения микросхемы производители обычно указывают в технических описаниях на свои устройства.

Как работать с ОУ LM358: схемы включения и практическое применение

Операционный усилитель LM358 стал одним из самых популярных типов компонентов аналоговой электроники. Этот небольшой компонент может быть использован в самых разнообразных схемах, осуществляющих усиление сигналов, в различных генераторах, АЦП и прочих полезных устройствах.

Все радиоэлектронные компоненты следует разделять по мощности, диапазону рабочих частот, напряжению питания и прочим параметрам. А операционный усилитель LM358 относится к среднему классу устройств, которые получили самую широкую сферу применения для конструирования различных устройств: приборы контроля температуры, аналоговые преобразователи, промежуточные усилители и прочие полезные схемы.

Описание микросхемы LM358

Подтверждением высокой популярности микросхемы являются ее рабочие характеристики, позволяющие создавать много различных устройств. К основным показательным характеристикам компонента следует отнести нижеследующие.

Приемлемые рабочие параметры: в микросхеме предусмотрено одно и двухполюсное питание, широкий диапазон напряжений питания от 3 до 32 В, приемлемая скорость нарастания выходного сигнала, равная всего 0,6 В/мкс. Также микросхема потребляет всего 0,7 мА, а напряжение смещения составит всего 0,2мВ.

Описание выводов

Микросхема реализована в стандартных корпусах DIP, SO и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4, 8) используются в качестве выводов двухполярного и однополярного питания в зависимости от типа источника или конструкции готового устройства. Входы микросхемы 2, 3 и 5, 6. Выходы 1 и 7.

В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.

Микросхема является популярной и используется в бытовых приборах, эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.

Аналоги микросхемы

Являясь средним по параметрам, операционный усилитель LM358 имеет аналоги по техническим характеристикам. Компонент без буквы может быть заменен на OP295, OPA2237, TA75358P, UPC358C, NE532, OP04, OP221, OP290. А для замены LM358D потребуется использовать KIA358F, NE532D, TA75358CF, UPC358G. Интегральная микросхема выпускается в серии с другими компонентами, которые имеют отличия лишь в температурном диапазоне, предназначенные для работы в суровых условиях.

Встречаются операционные усилители с максимальной температурой до 125 градусов и с минимальной до 55. Из-за чего сильно разнится и стоимость устройства в различных магазинах.

К серии микросхем относятся LM138, LM258, LM458. Подбирая альтернативные аналоговые элементы для применения в устройствах важно учитывать рабочий температурный диапазон. Например, если LM358 с пределом от 0 до 70 градусов недостаточно, то можно использовать более приспособленные к суровым условиям LM2409. Также довольно часто для изготовления различных устройств требуется не 2 ячейки, а 1, тем более, если место в корпусе готового изделия ограничено. Одними из самых подходящих для использования при конструировании небольших устройств являются ОУ LM321, LMV321, у которых также есть аналоги AD8541, OP191, OPA337.

Особенности включения

Существует много схем подключения операционного усилителя LM358 в зависимости от необходимых требований и выполняемых функций, которые будут к ним предъявлены при эксплуатации:

  • неинвертирующий усилитель;
  • преобразователь ток-напряжение;
  • преобразователь напряжение-ток;
  • дифференциальный усилитель с пропорциональным коэффициентом усиления без регулировки;
  • дифференциальный усилитель с интегральной схемой регулирования коэффициента;
  • схема контроля тока;
  • преобразователь напряжение-частота.

Популярные схемы на lm358

Существуют различные устройства, собранные на LM358 N , выполняющие определенные функции. При этом это могут быть всевозможные усилители как УМЗЧ, так и в промежуточных цепях измерений различных сигналов, усилитель термопары LM358, сравнивающие схемы, аналого-цифровые преобразователи и прочее.

Читайте также:  Bosch aqua stop инструкция

Неинвертирующий усилитель и источник опорного напряжения

Это самые популярные типы схем подключения, применяемые во многих устройствах для выполнения различных функций. В схеме неинвертирующего усилителя выходное напряжения будет равно произведению входного на пропорциональный коэффициент усиления, сформированный отношением двух сопротивлений, включенных в инвертирующую цепь.

Схема источника опорного напряжения пользуется высокой популярностью благодаря своим высоким практическим характеристикам и стабильности работы в различных режимах. Схема отлично удерживает необходимый уровень выходного напряжения. Она получила применение для построения надежных и высококачественных источников питания, аналоговых преобразователей сигналов, в устройствах измерения различных физических величин.

Генератор синусоидальных сигналов

Одной из самых качественных схем синусоидальных генераторов является устройство на мосте Вина. При корректном подборе компонентов генератор вырабатывает импульсы в широком диапазоне частот с высокой стабильностью. Также микросхема LM 358 часто используется для реализации генератора прямоугольных импульсов различной скважности и длительности. При этом сигнал является стабильным и высококачественным.

Основным применением микросхемы LM358 являются усилители и различная усилительная аппаратура. Что обеспечивается за счет особенностей включения, выбора прочих компонентов. Такая схема применяется, например, для реализации усилителя термопары.

Усилитель термопары на LM358

Очень часто в жизни радиолюбителя требуется осуществлять контроль температуры каких-либо устройств. Например, на жале паяльника. Обычным градусником это не сделаешь, тем более, когда необходимо изготовить автоматическую схему регулирования. Для этого можно использоваться ОУ LM 358. Эта микросхема имеется малый тепловой дрейф нуля, поэтому относится к высокоточным. Поэтому она активно используется многими разработчиками для изготовления паяльных станций, прочих в устройствах.

Схема позволяет измерять температуру в широком диапазоне от 0 до 1000 о С с достаточно высокой точностью до 0,02 о С. Термопара изготовлена из сплава на основе никеля: хромаля, алюмеля. Второй тип металла имеет более светлый цвет и меньше подвержен к намагничиванию, хромаль темнее, магнитится лучше. К особенностям схемы стоит отнести наличие кремниевого диода, который должен быть размещен как можно ближе к термопаре. Термоэлектрическая пара хромаль-алюмель при нагреве становится дополнительным источником ЭДС, что может внести существенные коррективы на основные измерения.

Простая схема регулятора тока

Схема включает кремниевый диод. Напряжения перехода с него используется как источник опорного сигнала, поступающий через ограничивающий резистор на неинвертирующий вход микросхемы. Для регулировки тока стабилизации схемы использован дополнительный резистор, подключенный к отрицательному выводу источника питания, к неивертирующему входу МС.

Схема состоит из нескольких компонентов:

  • Резистора, подпирающего ОУ минусовым выводом и сопротивлением 0,8 Ом.
  • Резистивного делителя напряжения, состоящего из 3 сопротивлений с диодом, выступающего источником опорного напряжения.

Резистор номиналом 82 кОм подключен к минусу источника и положительному входу МС. Опорное напряжение формируется делителем, состоящим из резистора 2,4 кОм и диода в прямом включении. После чего ток ограничивается резистором 380 кОм. ОУ управляет биполярным транзистором, эмиттер которого подключен непосредственно к инвертирующему входу МС, образовав отрицательную глубокую связь. Резистор R 1 выступает измерительным шунтом. Опорное напряжение формируется при помощи делителя, состоящего из диода VD 1 и резистора R 4.

В представленной схеме при условии использования резистора R 2 сопротивлением 82 кОм ток стабилизации в нагрузке составляет 74мА при входном напряжении 5В. А при увеличении входного напряжения до 15В ток увеличивается до 81мА. Таким образом, при изменении напряжения в 3 раза ток изменился не более, чем на 10%.

Зарядное устройство на LM 358

С использованием ОУ LM 358 часто изготавливают зарядные устройства с высокой стабилизацией и контролем выходного напряжения. Как пример, можно рассмотреть зарядное устройство для Li — ion с питанием от USB . Эта схема представляет собой автоматический регулятор тока. То есть, при повышении напряжения на аккумуляторе зарядный ток падает. А при полном заряде АКБ схема прекращает работать, полностью закрывая транзистор.

по входам + и — поставить делители напряжений состоящих из термосопротивления и резистора МЛТ
(по 100К четыре сопротивления). К минусу питания термосопротивления к плюсу МЛТ, т.е регистрировать разницу температур в гараже и на улице. Запитать схему от элементов 4,5 Вольта. Вопрос . Как будет уплывать точность настройки с понижением напряжения с 4,5 В. до 3,5В.Спасибо. Где почитать чтобы самому дошло.

Lm358p применение в зарядном устройстве

Сосед обратился с просьбой отремонтировать зарядное устройство для литиевого аккумулятора. После переполюсовки зарядное полностью перестало реагировать на сеть и аккумулятор. Так как тема использования аккумуляторов типоразмера 18650 для меня имеет в последнее время прикладной характер, решил соседу помочь.

Зарядное для аккумуляторов 18650

Со слов соседа, алгоритм работы устройства таков: при подключенном аккумуляторе и поданном сетевом напряжении загорается красный светодиод и горит до тех пор, пока аккумулятор не зарядится, после чего загорается зеленый светодиод. Без установленного аккумулятора и поданном сетевом напряжении, светится зеленый светодиод.

Судя по этикетке, заряд током 450 mA осуществляется в щадящем режиме, но как оказалось после вскрытия это вариант эконом)). Схема зарядки состоит из двух узлов: преобразователя сетевого напряжения на одном транзисторе MJE 13001 и контроллера уровня заряда.

Разборка зарядного от Li-Ion 18650

Схема зарядного для АКБ

Преобразователь на одном MJE 13001 часто встречается в дешевых зарядках для телефонов, а так же в зарядках типа «лягушка». Рисовать ее не стал – просто посмотрел в интернете похожую схему. Плюс, минус один резистор/конденсатор большой роли не играют. Схема типовая.

Тестером прозвонил диоды, стабилитрон и транзистор, убедился в их целостности. Решил проверить резисторы и попал в точку! Оказался оборванным резистор R1 – 510 кОм (на вышеприведенной схеме это резистор R3), подтягивающий напряжение питания к базе транзистора. В наличии такого не нашлось, взамен его был установлен резистор на 560 кОм.

После замены резистора зарядка завелась.

Зарядное заработало — светодиод светится

Ради интереса заглянул в даташит контроллера заряда аккумулятора. Им является микросхема HT3582DA.

Так же часто встречается ее клон СТ3582.

Схема включения HT3582DA

Как выяснилось, допускаются два варианта включения микросхемы: 5-й вывод замыкается либо с 8-м либо с 6-м выводом. В моем случае были замкнуты 5-й и 6-й. Как видим, производитель заявляет максимум 300 мА. Так что, на этикетке зарядки выражен большой оптимизм в 450 мА))). Но самое интересное ждало впереди. Проверка мультиметром напряжения на выходе зарядного показала его обратную полярность.

Напряжение на выходе ЗУ

Как оказалось, сначала нужно вставить аккумулятор для определения контроллером полярности, а потом включать в сеть. В даташите говорится о автоматическом определении полярности батареи. Кроме того, контроллер легко выдерживает короткое замыкание на выходе.

При КЗ заряд отключается

Для проверки результатов ремонта вставил аккумулятор и включил зарядное в сеть. Через какое то время заметил, что красный светодиод не светится, а значит снова что то не работает. Ни какого криминала при вскрытии выявлено не было, все доступные проверке тестером элементы в порядке. Начал подумывать на контроллер, но решил перед началом поисков его в магазинах проверить конденсаторы. В наличии имеется тестер полупроводниковых приборов Т4. С его помощью были проверены электролиты, а затем и керамические конденсаторы. И вот они то меня сильно и удивили. Оба конденсатора на 0,1 мкф показали следующее:

Тестер полупроводниковых приборов Т4 меряет конденсаторы

Конденсатор 472 пФ почему то оказался аж 8199 пФ. Поскольку такого в закромах не нашлось, пришлось слепить из двух близкое значение. Конденсаторы на 0,1 мкф заменил на исправные с предварительной проверкой параметров.

После произведенных манипуляций зарядное заработало должным образом. Сосед счастлив и распространяет информацию о моих магических способностях). Автор материала — Кондратьев Николай, Г. Донецк.

IC-Stroy.ru