- Lm350t схема блока питания
- Регулируемый блок питания своими руками
- Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов
- Datasheet по lm317, lm350, lm338
- Схемы и расчеты
- Онлайн калькулятор lm317, lm350 и lm338
- LM338 регулируемый стабилизатор напряжения и тока. Распиновка, datasheet
- Технические характеристики стабилизатора LM338:
- Распиновка выводов стабилизатора LM338
- Основные технические характеристики LM338
- Калькулятор для LM338
- Примеры применения стабилизатора LM338 (схемы включения)
- Простой регулируемый блок питания на LM338
- Простой 5 амперный регулируемый блок питания
- Регулируемый блок питания на 15 ампер
- Источник питания с цифровым управлением
- Схема контроллера освещения
- Зарядное устройство 12В на LM338
- Схема плавного включения (мягкий старт) блока питания
- Схема термостата на LM338
- LM317 и LM317T схемы включения, datasheet
- Характеристики
- Типовые схемы включения
- Калькуляторы
- Схемы включения
- Радиоконструкторы
- Datasheet, даташит
- Проблемы монтажа на примере 4-х канального БП на LM350
- Устройство БП
- Трансформатор
- Монтаж элементов
- Трансформатор
- Регулятор оборотов вентилятора
- Диодные мосты и фильтрующие конденсаторы
- Лицевая панель — гнезда и переменные резисторы
- Укладка и закрепление проводов
Lm350t схема блока питания
Регулируемый блок питания своими руками
Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.
Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ
Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.
Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.
А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.
Схема регулируемого блока питания с защитой от КЗ на LM317
Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.
Печатная плата регулируемого блока питания на регуляторе напряжения LM317
Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.
Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.
А теперь самое интересное… Испытания блока питания на прочность.
Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.
Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.
Схема подключения вентилятора к блоку питания
Что будет с блоком питания при коротком замыкании?
При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.
Радиодетали для сборки регулируемого блока питания на LM317
- Стабилизатор напряжения LM317
- Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
- Конденсатор С1 4700mf 50V
- Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
- Переменный резистор Р1 5К
- Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками
Стабилизаторы тока на lm317, lm338, lm350 и их применение для светодиодов
В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.
Datasheet по lm317, lm350, lm338
Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).
Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.
* — зависит от производителя ИМ.
Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.
Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.
Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:
- ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
- OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
- INPUT. Вывод для подачи напряжения питания.
Схемы и расчеты
Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора. На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.
Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I0 (1), где I0 – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I0 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.
Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.
Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности. Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.
Онлайн калькулятор lm317, lm350 и lm338
Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).
На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.
Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.
LM338 регулируемый стабилизатор напряжения и тока. Распиновка, datasheet
Стабилизатор напряжения LM338, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания.
Технические характеристики стабилизатора LM338:
- Обеспечения выходного напряжения от 1,2 до 32 В.
- Ток нагрузки до 5 A.
- Наличие защиты от возможного короткого замыкания.
- Надежная защита микросхемы от перегрева.
- Погрешность выходного напряжения 0,1%.
Интегральная микросхема LM338 выпускается в двух вариантах корпусов — это в металлическом корпусе TO-3 и в пластиковом TO-220:
Распиновка выводов стабилизатора LM338
Основные технические характеристики LM338
Калькулятор для LM338
Расчет параметров стабилизатора LM338 идентичен расчету LM317. Онлайн калькулятор находится здесь.
Примеры применения стабилизатора LM338 (схемы включения)
Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM338.
Простой регулируемый блок питания на LM338
Данная схема — типовое подключение обвязки LM338. Схема блока питания обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.
Переменный резистор R1 используется для плавного регулирования выходного напряжения.
Простой 5 амперный регулируемый блок питания
Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.
Регулируемый блок питания на 15 ампер
Как уже было сказано ранее микросхема LM338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:
В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.
Переменный резистор R8 предназначен для плавной регулировки выходного напряжения
Источник питания с цифровым управлением
В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.
Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.
Схема контроллера освещения
Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.
Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.
Зарядное устройство 12В на LM338
Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.
Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.
Схема плавного включения (мягкий старт) блока питания
Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С2 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.
Схема термостата на LM338
LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.
Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.
Скачать datasheet LM338 (729,7 Kb, скачано: 5 655)
LM317 и LM317T схемы включения, datasheet
Микросхема уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На основе этой микросхемы можно собрать регулируемый блок питания на LM317, стабилизатор тока, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, для LM317 схема включения работает сразу, настройки не требуется.
Микросхемы ЛМ317 и LM317T datasheet полностью одинаковые, отличаются только корпусом. Никаких отличий или разницы нет, совсем нет.
Так же написал обзоры и datasheet других популярных ИМС TL431, LM358 LM358N, LM494. C хорошими иллюстрациями, понятными и простыми схемами.
- 1. Характеристики
- 2. Аналоги
- 3. Типовые схемы включения
- 4. Калькуляторы
- 5. Схемы включения
- 6. Радиоконструкторы
- 7. Datasheet, даташит
Характеристики
Основное назначение это стабилизация положительного напряжения. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.
Так же популярна LM317T, с ней не встречался, поэтому пришлось долго искать правильный даташит на неё. Оказалось, что они полностью идентичны по параметрам, букв «T» в конце маркировки обозначает корпус TO-220 на 1,5 Ампер.
Характеристики
Даже при наличии интегрированных систем защиты не следует эксплуатировать на пределе возможностей. Если выйдет из строя, неизвестно сколько Вольт будет на выходе, можно будет спалить дорогостоящую нагрузку.
Приведу основные электрические характеристики из LM317 datasheet на русском . Не все знают технические термины на английском.
В даташите указана огромная сфера применения, проще написать где она не используется.
КР142ЕН12
Микросхем которые имеют практически такой же функционал много, отечественных и зарубежных. Добавлю в список более мощные аналоги, чтобы избежать включения нескольких параллельно. Самый известный LM317 аналог, это отечественная КР142ЕН12.
- LM117 LM217 – расширенный диапазон рабочих температур от -55° до +150°;
- LM338, LM138, LM350 — аналоги на 5А, 5А и 3А соответственно;
- LM317HV, LM117HV — напряжение на выходе до 60V, если вам не достаточно стандартных 40V.
Полные аналоги:
Типовые схемы включения
Преобразователь с пониженными пульсациями LM317T
Регулируемый источник тока
Схема с предварительным стабилизатором
Регулятор 1,25 — 20 Вольт с регулируемым током
Параллельное подключение с одним регулятором
Схема для зарядки аккумуляторов на LM317T
Схема зарядки аккумулятора на 50мА
Схема плавного включения питания
Регулирование двумя LM317T синусоиды переменного тока
Зарядное устройство на 6V с ограничением Ампер
Параллельное подключение для увеличения мощности
Блок питания с большим током LM317T
Калькуляторы
Для максимального облегчения расчётов на основе LM317T разработано множество программ LM317 калькуляторов и онлайн калькуляторов. Указав исходные параметры сразу можно просчитать несколько вариантов и увидеть характеристики требуемых радиодеталей.
Программа для расчета источников напряжения и тока с учётом LM317 характеристик LM317T . Расчёт схем включения мощных преобразователей с использованием транзисторов, TL431, M5237. Так же ИМС 7805, 7809, 7812.
Схемы включения
Стабилизатор LM317 зарекомендовал себя универсальной микросхемой способной стабилизировать напряжение и Амперы. За десятки лет разработаны сотни схем включения LM317T различного применения. Основное назначение, это стабилизатор напряжения в блоках питания. Для увеличения силы количества Ампер на выходе есть несколько вариантов:
- подключение параллельно;
- установка на выходе силовых транзисторов, получим до 20А;
- замена на мощные аналоги LM338 до 5A или LM350 до 3А.
Для построения двухполярного блока питания применяются стабилизаторы отрицательного напряжение LM337.
Считаю, что параллельное подключение не самый лучший вариант из-за разницы в характеристиках стабилизаторов. Невозможно настроить несколько штук точно на одинаковые параметры, чтобы распределить нагрузку равномерно. Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастёт нагрузка на другие, которые могут не выдержать её.
Чтобы не подключать параллельно, лучше использовать для силовой части DC-DC преобразователя напряжения транзисторы на выходе. Они рассчитаны на большой ток и отвод тепла у них лучше из-за больших размеров.
Современные импульсные микросхемы уступают по популярности, её простоту трудно превзойти. Стабилизатор тока на lm317 для светодиодов прост в настройке и расчётах, в настоящее время до сих пор применяется на небольших производствах электронных блоков.
Светодиодный драйвер
Светодиодный драйвер до 5А
Зарядное для аккумуляторов
Регулируемый двухполярный блок питания от 0 до 36В
Двухполярный БП LM317 и LM337, для получения положительного и отрицательного напряжения.
Радиоконструкторы
Для начинающих радиолюбителей могу порекомендовать радиоконструкторы от китайцев на Aliexpress. Такой конструктор оптимальный способ собрать устройство по схеме включения, не надо изготавливать плату и подбирать детали. Любой конструктор можно доработать по своему усмотрению, главное чтобы плата была. Стоимость конструктора от 100 руб с доставкой, готовый модуль в сборе от 50 руб.
Datasheet, даташит
Микросхема очень популярная, выпускает множеством производителей, включая китайских. Мои коллегам попадались ЛМ317 с плохими параметрами, которые не тянут заявленный ток. Покупали у китайцев, которые любят всё подделывать и копировать, при этом ухудшая характеристики.
Здравствуйте объясните пожалуйста как включать лм317 параллельно и регулировать ток?
Параллельно лучше не подключать, лучше купите аналогичный регулятор напряжения на 3-5 ампер.
почму в лаболаторном блоке питания на лм317 5а. от5 до 50вольт при влюченииблока происходит большой скачек напряжения что с нагрузкой что без сколько бьюсь все без результатно кто в силах подскажте в чем причина
Обычно они до 37 вольт на выходе. В усилителях звука чтобы избежать скачков при включении усилителя ставят реле, которое подключает вход через 2-3 секунды после включения.
Здравствуйте. В чем различие lm7812 и lm317? В сети пишут один стабилизирует напряжение, а второй ток и нет разницы какой ставить. Что все таки ставить? например для авто
Один с постоянным напряжением стабилизации, второй с переменным.
Где,должна быть больше емкость, на входе стабилизатора,или на выходе? И почему?
Кондер стабилизирует или убирает ВЧ помехи.
Проблемы монтажа на примере 4-х канального БП на LM350
Эта заметка не о блоке питания, а о вариантах решения проблем расположения и монтажа элементов в самодельных устройствах на примере рабочего блока питания. И хотя БП был сделан именно как инструмент для работы при ремонте и тестировании, назвать его лабораторным блоком питания будет вряд ли уместно, поскольку он не дотягивает до негласного стандарта таких устройств. В этой заметке он использован только для демонстрации вариантов решения проблем монтажа элементов. Проблемам монтажа обычно уделяют мало внимания, хотя на практике они почти всегда отнимают много сил и времени.
Ниже — 40-минутное видео и много фото.
Время разных этапов этого видео:
1 мин 24 сек — пару слов по схеме БП
5 мин 32 сек — регулятор оборотов вентилятора с термистором
8 мин 09 сек — начало по теме видео
10 мин 46 сек — БП разобран, рассказ о монтаже
12 мин 08 сек — об изучении рынка и запасах хлама
17 мин 05 сек — закрепление диодных мостов и конденсаторов
19 мин 51 сек — проблемы укладки проводов
20 мин 28 сек — монтаж деталей лицевой панели
32 мин 07 сек — некоторые выводы
34 мин 30 сек — крепление трансформатора без контакта с корпусом
Устройство БП
Пару слов о самом блоке питания.
БП 4-х канальный, трансформаторный. Каждый из 4-х каналов построен на базе линейного стабилизатора LM350, и полностью изолирован от соседних. БП будет по мере надобности дорабатываться, хотя сейчас весомых причин для этого нет. Дело в том, что предназначение и полезный эффект от возможных доработок БП пока не стоит тех затрат, которые ради этого необходимо будет понести.
Впрочем, время покажет.
Трансформатор
Об этом трансформаторе у меня есть отдельная заметка:
Перемотка трансформатора без разборки
Здесь хочется особо отметить один момент.
Поскольку этот рабочий блок питания (наподобие лабораторного) является инструментом, а не частью другого изделия, то я не увидел смысла в том, чтобы создавать какой-то полностью законченный продукт.
Т.е. этот БП всегда в состоянии перманентной доработки, переделки, и его можно всегда разобрать и изменить под текущую задачу. И трансформатор, имеющий множество вторичных обмоток, делался изначально с возможностью изменять в нем напряжение на каждом канале в зависимости от задач.
Подробнее о нем — см. в упомянутой выше заметке.
БП не доделан! И хотя схема здесь не имеет значения (поскольку БП использован как пример решения проблем монтажа), привожу ее ниже:
Здесь использован простейший вариант с минимальным количеством радиодеталей. Единственный интересный момент — это использование двух параллельных конденсаторов в сглаживающем фильтре после диодного моста. Один конденсатор основной на 4700 мкФ 50v, второй низкоимпедансный малой емкости, находящейся в непостредственной близости к микросхеме на 470 мкФ 50v.
КСТАТИ! Зависимость выходного напряжения от угла поворота ручки переменного резистора в стандартной схеме LM350 одинакова при разных входных напряжениях (до максимального напряжения меньшего из этих разных).
Монтаж элементов
В процессе обдумывания монтажа приходится покупать сначала разные образцы элементов конструкции, гнезд и радиодеталей, которые есть в продаже и прикидывать, прикладывать, проверять. А потом докупать необходимое количество того образца, который удачно подошел.
Часто планы приходится менять только потому, что чего-то просто не оказалось в магазинах. Видимо имеет смысл заранее изучить рынок.
Сложно обойтись и без того, чтобы иметь под рукой кучу всякого старого барахла, разобранных изделий, крючков, проволочек, ручек, уголков, пружинок, пластин, пластмассовых шайб и просто обломков, для того, чтобы прикидывая их по очереди, конструировать из этого какие-то крепления и пр. составные элементы.
Эта работа может занять больше времени чем все остальное, имеющее непосредственное отношение к электронике.
Трансформатор
Трансформатор имеет внутренний экран (подробнее об устройстве и переделке трансформатора — см. отдельную заметку). Этот экран соединен с корпусом. Поскольку по поводу этого экрана в сети много споров, я решил не рисковать и изолировать корпус трансформатора от корпуса блока питания.
Для этого я использовал обыкновенные строительные пластмассовые дюбеля и резиновые подушки. Дюбеля вставлены в отверстия и с обратной стороны разведены четырмя лепестками, прижатые сверху резиновой подушкой. Если в процессе я пойму, что корпус трансформатора все-таки лучше заземлить на корпус БП, то это можно будет легко сделать в любой момент.
Радиаторы в этом БП были взяты с донорской платы — старый аудио усилитель. Пришлось отпилить лишние части. Была попытка нарезать резьбу под новые крепления — закончилась неудачей. В алюминии очень тяжело нарезать резьбу — она слизывается. Пришлось сверлить сквозные отверстия и использовать длинные винты.
Изначально я планировал изолировать радиаторы от корпуса, но по причине сложности гарантировать отсутствие случайного контакта, решение было изменено и были изолированы корпуса микросхем LM350 — через теплопередающую прокладку. Для закрепления корпусов микросхем на радиаторе винтами, пришлось использовать специальные изолирующие шайбы с бортиками. Они были взяты со сгоревшего компьютерного БП (хотя с ними проблем нет — они есть в продаже, как и изолирующие термопроводящие прокладки).
Так же повезло найти среди своего хлама длинные скобы, на которые были закреплены оба радиатора. Поскольку радиаторы имеют контакт с корпусом, то дополнительно экранируют часть схемы от трансформатора.
Регулятор оборотов вентилятора
Датчиком регулятора является термистор (NTC) взятый с донорской платы сгоревшего компьютерного БП. Схему регулятора оборотов я разрабатывал, погружая этот термистор в кипяток :). Это первая в моей жизни аналоговая схема с участием транзистора, которую я придумал сам без посторонней помощи 🙂 (см. выше в разделе «Схема«).
Конструкция выполнена навесным монтажом, и через изолятор закреплена на скобе одним винтом. Детали конструкции держат друг друга за счет жесткости своих выводов и пайки между ними. Регулирующий транзистор КТ815А и линейный стабилизатор LM317 имеют мини-радиаторы, и находясь близко возле вентилятора, получают даже при малых оборотах достаточный обдув.
Диодные мосты и фильтрующие конденсаторы
Диодные мосты KBU810 (8А 1000v) имеют в центре отверстие, которое позволило закрепить их в ряд на шпильке М4 (шпилька куплена в спец магазине вентиляционных систем по очень низкой цене). Расстояние между ними выдерживается при помощи отрезков толстостенного кембрика. С обоих концов шпильки одета пластмассовая шайба, для предотвращения случайного контакта.
Между трансформатором и конструкцией из четырех выпрямителей на простых конденсаторах (4700 мкФ x 50v) с диодными мостами, установлен металлический экран на который наклеена малярная лента. К экрану подпаян провод с клеммой под заземление.
Лицевая панель — гнезда и переменные резисторы
На лицевой панели изначально планировалось по два регулятора на каждый из четырех изолированных друг от друга каналов, и индикаторы. В процессе изготовления БП стало понятно, что возможно многое из задуманного не имеет смысла. Единственное достоинство это БП — его «аналоговость». Соответственно любые узлы с использованием контроллера являлись бы потенциальным источником помех. Но главное — все дополнительные фишки оказались намного сложнее и дороже чем весь базовый БП. Поэтому решение было отложено на долгое время до полного понимания — стоит оно того или нет (или лучше сделать еще и импульсник и в нем развернуться как душе угодно).
Тем не менее место под возможную доработку было оставлено, и детали были использованы соответствующих размеров.
При обдумывании и проектировании элементов управления приходится как правило покупать разные варианты в единичном экземпляре, изучать наличие в магазинах и только потом, определившись, докупать полный комплект.
Укладка и закрепление проводов
Укладка проводов может оказаться более сложным делом, чем изначально кажется.
В этом БП я использовал провода в двойной изоляции в цепях постоянного тока. Они занимали много места и мне пришлось долго мучатся, устраняя выпирание лицевой панели. В результате некоторых усилий и экспериментов, удалось развести провода так, что они ничему не мешали и ни во что не упирались. На это ушло много времени.
Рекомендую активно использовать цветные кембрики (термоусадочную трубку), — даже в простых на первый взгляд конструкциях такая маркировка проводов значительно облегчает работу со схемой.
Обязательно надо продумать влияние помех, магнитных полей и направление потоков воздуха!