- Arduino nano своими руками
- Часы-пропеллер на Arduino NANO своими руками
- Как сделать часы-пропеллер, пошаговая инструкция:
- Arduino своими руками — Сайт arduino-hobby!
- 10 интересных вещей, которые можно сделать на Arduino
- Что за Arduino
- 1. Робот-бармен с Bluetooth-управлением
- 2. Светящийся куб на 512 светодиодов
- 3. Взломщик кодовых замков
- 4. Nod Bang — киваем головой и делаем бит
- 5. Поющее растение
- 6. Замок, который открывается на секретный стук
- 7. Горшок для цветов с автополивом
- 8. Драм-машина
- 9. Шагающий робот
- 10. Робот-пылесос
Arduino nano своими руками
Часы-пропеллер на Arduino NANO своими руками
Сегодня я буду делать замечательное устройство, которое приковывает взгляд людей своим магическим светодиодным свечением, это – часы, но не обычные, а часы-пропеллер на Arduino NANO. Линейка светодиодов вращаясь по кругу с высокой скоростью вырисовывает циферблат аналоговых часов с ходящими по ним стрелками. Кроме такого отображения они могут показывать любую другую информацию, например, цифровые часы с датой и различными надписями. Я думаю, что подобные часы-пропеллер должен сделать для себя каждый гик-радиолюбитель так как это легко, а результат просто впечатляющий!
Часы пропеллер на Arduino NANO своими руками
Что понадобится чтобы сделать вращающиеся часы:
- Arduino NANO;
- Яркие красные светодиоды – 11 шт;
- Яркие зелёные светодиоды – 5 шт;
- Синий светодиод – 1 шт;
- Резисторы 330 Ом – 16 шт;
- Резистор 2,2 кОм – 1 шт;
- Резистор 10 кОм – 1шт;
- Датчик Холла W130;
- Макетная плата;
- Небольшой неодимовый магнит;
- Двигатель от кассетного магнитофона;
- Аккумулятор – 3,7 В, 240 мА/ч.
Как сделать часы-пропеллер, пошаговая инструкция:
Часы-пропеллер будем собирать по такой схеме:
Часы пропеллер на Arduino NANO своими руками
Отрежем от макетной платы полоску, на ней будет размещаться вся схема часов-пропеллера вместе с аккумулятором и Ардуино.
Часы пропеллер на Arduino NANO своими руками
Размещаем в линию светодиоды на макетной плате, катоды светодиодов будут спаиваться вместе, поэтому загибаем их к верху в одном направлении, а анод в бок, к каждому из этих анодов будет припаян ограничивающий ток резистор на 330 Ом.
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
На фото пока нет самого крайнего синего светодиода, который будет сигнализатором, что на часы подано питание и который будет вырисовывать внешнюю красивую синюю рамку. Так что можете сразу его впаять, я это сделал позже, ему также понадобится резистор, на этот раз 2,2 кОм.
На другом конце платы припаиваем коннекторы под плату Ардуино, чтобы плата могла в любое время без проблем быть извлечена из схемы часов. Плата не должна располагаться на самом конце мекетной платы, должно оставаться немного места для противовеса, который установим чуть позже. Вставляем плату Arduino на своё место.
Часы пропеллер на Arduino NANO своими руками
Соединяем проводниками ножки Ардуины со светодиодами согласно схемы.
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Теперь подключим датчик Холла.
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Припаиваем два пина для джампера который будет подключать питание от аккумулятора, чуть позже к этим контактам я подпаяю микропереключатель, и также два пина под подключение аккумулятора, который будет съёмным. Аккумулятор я притянул к передней части Ардуино с помощью резинки.
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Между платой Arduino и светодиодами я просверлил отверстие. Взял сверло по диаметру вала двигателя надел на неё ролик который стоял на двигателе от кассетного магнитофона, продел свело через отверстие в плате и приклеил этот ролик к макетной плате. Затем взял ещё один точно такой же ролик и надел на сверло (чтобы ролики стояли ровно по оси) с другой стороны платы и также залил термоклеем.
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Также термоклеем я зафиксировал проводники снизу платы в нескольких местах.
Часы пропеллер на Arduino NANO своими руками
Всё, теперь можем заливать счетч часов-пропеллера в Ардуино, его Вы можете скачать отсюда.
На скорую руку сделал корпус из косков ДСП и фанеры, покрасил переднюю панель в чёрный цвет, по центру сделал отверстие для вала двигателя, который был прикреплён сзади.
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Также на обратном от светодиоде конце платы, возле Ардуино просверлил отверстие под болтик, на который я накрутил 3 гайки, чтобы был противовес и можно было сбалансировать стороны платы, чтобы не было большого перевеса какой-либо из сторон.
Надеваем на вал двигателя нашу плату. Теперь нужно приклеить неодимовый магнит в верхней части, в том месте где будет проходить датчик Холла.
Часы пропеллер на Arduino NANO своими руками
Теперь начинаем плавно подавать напряжение, чтобы часы отрегулировать таким образом, чтобы отметка 12 часов была точно вверху.
Часы пропеллер на Arduino NANO своими руками
Когда я убедился, что всё работает отлично, я припаял синий светодиод «состояния часов» и также подпаял выключатель питания.
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Всё, самодельные часы-пропеллер готовы! Чтобы их включить надо сначала переключить выключатель на плате во включенное состояние, при этом загорится синий крайний светодиод, а затем уже подаём питание на двигатель, настраивая на лабораторном БП необходимое напряжение, чтобы циферблат выровнялся.
Часы пропеллер на Arduino NANO своими руками
Часы пропеллер на Arduino NANO своими руками
Внизу Вы видите аналоговые часы совмещённые с цифровыми и дополнительной надписью, это моя экспериментальная прошивка. Надеюсь Вам понравилась данная самоделка и Вы повторите её, так как она не сложная на самом деле.
Часы пропеллер на Arduino NANO своими руками
Arduino своими руками — Сайт arduino-hobby!
Ну вот и настало время освоить платформу для duino самостоятельно. Для начала разберемся, что нам может потребоваться. Для начал было бы не плохо определиться, на базе чего мы будем делать наш экземпляр отладочной платы. Чтобы упростить изначальную задачу, я предлагаю использовать USB-(UART)TTL адаптер для загрузки скетчей. Это упростит нам жизнь в разы. лично я буду использовать дешевенький адаптер, заказанный в ныне несуществующем интернет-магазине, но все также рабочий.
При построении нашей Duino будем стараться использовать минимальное количество элементов. По мере освоения будем добавлять необходимые компоненты.
Для ознакомления найдем схемы различных платформ на официальном сайте:
На мой взгляд схемы хорошие, но неплохо было бы посмотреть уже проверенные реализации «самоделок», мне очень понравились 3 варианта:
http://zelectro.cc/DIY/arduino-usb (с USB пока не заморачиваемся, отсюда возьмем отличную схему)
Соорудим минимальную обвязку нашему устройству.На первом этапе деталей необходимо минимум:
— собственно сам МК atmega328P (в моем случае, хотя может использоваться и 168 и 8)
— конденсатор 22pF x 2шт.
— кнопка сброса (любая, кстати не обязательный элемент)
Вот в принципе и все, что минимально необходимо для работы микроконтроллера. Я предлагаю все наши работы иллюстрировать и проектировать в очень не плохой программке Fritzing:
Ну вот, давайте разберемся, зачем нужны данные элементы. Кнопка позволяет перезапустить микроконтроллер, резистор R1 является подтягивающим резистором для кнопки. Кварц, C1 и C2 являются внешним тактовым генератором для контроллера.
Это необходимая и достаточная обвязка, но лично я настоятельно Вам рекомендую установить керамический конденсатор 100nF параллельно основному питанию микросхемы.
Ну вот и готова наша минимальная Duino. Для того, чтобы удобнее было использовать данный отладочный инструмент, я предлагаю наклеивать на корпус подсказку с распиновкой «атмеги». Мой вариант реализован в Corel Draw:
Для начала соберем схему нашей Duino на беспаечной макетной плате, вот что получилось у меня:
Для загрузки скетчей мы будем использовать USB — TTL адаптер, на фото мой уже изрядно потрепавшийся адаптер на базе микросхемы CP2102:
Но перед загрузкой скетчей необходимо залить бутлоадер в МК, иначе, он «не поймет», что мы от него хотим. Есть масса способов, но мы будем использовать простейший. При помощи замечательного программатора USBasp:
Для начала подключим нашу Duino к программатору, это очень просто, достаточно соединить контакты программатора с Duino:
GND — масса (22 нога)
RES — перезагрузка (1 нога)
+5V — питание «+» (7 нога)
Далее, открываем Arduino IDE -> Сервис -> Программатор выбираем: «USBasp».
Затем Arduino IDE -> Сервис -> «Записать загрузчик»:
В процессе записи загрузчика придется подождать около 2 минут. После этого нам могут выпасть разнообразные «warning», типа «can not set SCK period» — не пугаемся и идем дальше.
Ну чтож, вот мы и готовы записать тестовый скетч «Blink» в наш новоиспеченный Duino, но есть один момент, и на нем я хотел бы остановиться. Как мы уже говорили для записи скетчей используется последовательный порт, но в «обычной» жизни МК это цифровые порты 0 и 1. Все очень просто, мы уже залили бутлоадер, он инициализирует запись новой прошивки при включении в течении нескольких секунд, после этого Duino начинает выполнять программу, которая записана у нее в памяти.
Чтобы перевести Duino в режим «приема», необходимо перезагрузить МК, для этого мы сделали специальную кнопку, но нажать ее нужно строго в определенный момент, это совсем не подходит для нас. К счастью на переходниках есть специальный вывод «RST», который достаточно подключить к 1 ноге МК, чтобы автоматически перезагружать Duino перед загрузкой скетча. Подключение очень простое, (переходник — Duino):
GND — масса (22 нога)
RXD — подключить к TXD (3 нога)
TXD — подключить к КXD (2 нога)
5V — питание «+» (7 нога)
RST — перезагрузка (1 нога)
Как Вы заметили контакты приема/передачи подключаются перекрестно. И все бы хорошо, но есть одно «но»: существует огромное множество переходников, а для автоматической перезагрузки МК необходимо внедрить конденсатор на 100pF в разрыв цепи RST — перезагрузка (1 нога). В некоторых адаптерах он есть, а в некоторых — увы нет. Тут нужно только проверять, в моем экземпляре встроенного конденсатора не оказалось. В итоге схема немного «усложнилась»:
Ну что же, теперь можно загрузить скетч в памяти Duino и попробовать провести несколько экспериментов =) (на фото добавлены светодиоды — индикаторы загрузки скетча):
А зачем было так разжевывать все эти и так понятные вещи, почему нельзя было сразу нарисовать схему рабочей Duino и не мучить читателей «многобукав»? А затем, что иначе никто даже не задумался бы зачем та или иная деталь в Duino, а когда работаешь с отладочным инструментом — необходимо знать все его тонкости и особенности.
В дополнение выкладываю все «сырцы» проектов во Fritzing:
10 интересных вещей, которые можно сделать на Arduino
Если у вас есть тяга к технологиям (или ребёнок с такой тягой), рассмотрите Arduino. Эта штука озадачит вас и ребёнка на много часов, а на выходе получатся удивительные проекты.
Что за Arduino
Arduino — это программируемый микроконтроллер. То есть это плата, на которую можно записать вашу программу, и эта плата сможет управлять другими штуками: например, зажечь лампочку, издать звук, включить электроприбор, измерить температуру, отправить СМС.
На самом базовом уровне Arduino просто отправляет и считывает электрические импульсы. Например, можно подключить к нему термометр, и Arduino сможет считать температуру в комнате. А потом, в зависимости от программы, отправить сигнал на устройство, которое включит вентилятор.
Или можно подключить к Arduino датчик углекислого газа. Arduino можно научить считывать показания датчика каждые пять минут и, когда уровень углекислого газа превышает норму, запищать, замигать лампочкой или с помощью серии моторчиков открыть окно.
К Arduino есть много плат расширения и датчиков. Сферы применения платы почти безграничны: автоматизация, системы безопасности, умный дом, музыка, робототехника и многое другое. Вот что можно делать на этой умной итальянской плате и на её российских и зарубежных клонах.
1. Робот-бармен с Bluetooth-управлением
Сложность: 4/5.
Время: 5/5.
Незаменимое устройство для любой вечеринки: работает от восьми батареек, готовит много коктейлей и управляется без проводов. В основе механического бармена — плата Arduino, приводы для позиционирования шейкера и подачи напитков, датчики положений.
Главная сложность при изготовлении — инженерная. Нужно точно прикрутить все детали и соединить их между собой, чтобы ёмкость оказывалась точно под нужными бутылками.
2. Светящийся куб на 512 светодиодов
Сложность: 3/5.
Время: 3/5.
Красивая штука, которая может светиться в такт музыке как трёхмерный эквалайзер и показывать 3D-анимацию. А ещё это может работать как необычный ночник.
Для сборки понадобится деревянное шасси с отверстиями, чтобы каждый ярус был таким же по размеру и форме, что и остальные. Число светодиодов в каждой грани выбрано не случайно: 8 ламп = 8-битная логика, самая простая в программировании и управлении через контроллер.
3. Взломщик кодовых замков
Сложность: 5/5.
Время: 4/5.
Этот проект разработал хакер Сэми Камкар, и мы приводим его только в демонстрационных целях. Для взлома, кроме платы Arduino, автор взял серво- и шаговый двигатели для перебора комбинаций и соединил всё на самодельном шасси из алюминия. В основе алгоритма — простой перебор всех комбинаций, но робот это делает быстрее человека.
4. Nod Bang — киваем головой и делаем бит
Сложность: 2/5.
Время: 3/5.
Идея в том, чтобы не просто кивать в такт музыке, а кивками самому генерировать звук. Эндрю Ли сделал специальное устройство, которое следит за положением головы и в момент наклона воспроизводит нужный звук.
В наушники он встроил акселерометр, кнопки отвечают за выбор звука, а Arduino — за воспроизведение звука на компьютере через MIDI-интерфейс. Чтобы всё выглядело эффектнее, у кнопок есть подсветка, и они тоже делают бит.
5. Поющее растение
Сложность: 2/5.
Время: 2/5.
По сути это терменвокс, который сделали в виде растения. Все остальные принципы работы остались теми же: звук возникает при движении рук, и разные движения генерируют разную мелодию.
Плата регистрирует изменение амплитуды сигнала, для чего автор использует самодельный сенсорный детектор для анализа прикосновений к цветку. Кроме этого понадобилась плата расширения Gameduino и сам цветок.
6. Замок, который открывается на секретный стук
Сложность: 3/5.
Время: 2/5.
Интересная вещь для тех, кто хочет поиграть в шпионов или пускать в комнату только своих друзей. Замок распознаёт стук по двери и сравнивает его с базовым звучанием, которое установил владелец. Если совпадает — приводы отодвигают замок и дверь открывается, если нет — ничего не происходит, можно постучать заново.
Чтобы установить новый стук на открытие, нужно зажать кнопку на ручке и постучать по двери новым способом. Пьезосенсор распознаёт вибрации и записывает их в память платы.
7. Горшок для цветов с автополивом
Сложность: 4/5.
Время: 3/5.
Полезный горшок для тех, кто забывает полить цветы перед отъездом или просто не знает, как часто надо их поливать. Вся электроника, насосы и ёмкость для воды находятся внутри горшка. Для каждого растения можно запрограммировать свой режим полива в каждом горшке.
Основные характеристики чудо-горшка:
- встроенный резервуар для воды;
- датчик контроля уровня влажности почвы;
- насос для подачи воды;
- датчик уровня воды в резервуаре;
- светодиод, информирующий о недостатке воды в резервуаре.
8. Драм-машина
Сложность: 1/5.
Время: 2/5.
Простая драм-машина на Arduino. Проект интересен тем, что это не обычный перебор записанных семплов, а настоящая генерация звука с помощью встроенного железа. Ещё здесь есть анализатор спектра звука: через видеовыход можно посмотреть на диаграммы и частотные характеристики.
Математическая основа этого устройства — разложение в ряд Фурье, которое решается подключением стандартной библиотеки.
9. Шагающий робот
Сложность: 2/5.
Время: 1/5.
Простой в изготовлении четырёхногий робот, который шагает и самостоятельно преодолевает препятствия в сантиметр высотой.
Чтобы его сделать, вам понадобятся сервомоторы для ног, немного проволоки и любой пластик, из которого делается шасси. Для питания — аккумулятор любой модели, который крепится на спине робота.
10. Робот-пылесос
Сложность: 4/5.
Время: 5/5.
Дмитрий Иванов из Сочи собрал настоящий робот-пылесос, который делает всё то же самое, что и промышленные устройства, только с возможностью тонкой настройки под себя и свою квартиру.
Основные детали — плата Arduino, 6 инфракрасных датчиков, турбина с двигателем и щётками и аккумулятор. Ещё у робота есть датчики столкновения, которые помогают объезжать препятствия, и контроллер аккумулятора, который следит за уровнем батарей и предупреждает о том, что пылесос надо зарядить.