Arduino nano своими руками

Arduino nano своими руками

Часы-пропеллер на Arduino NANO своими руками

Сегодня я буду делать замечательное устройство, которое приковывает взгляд людей своим магическим светодиодным свечением, это – часы, но не обычные, а часы-пропеллер на Arduino NANO. Линейка светодиодов вращаясь по кругу с высокой скоростью вырисовывает циферблат аналоговых часов с ходящими по ним стрелками. Кроме такого отображения они могут показывать любую другую информацию, например, цифровые часы с датой и различными надписями. Я думаю, что подобные часы-пропеллер должен сделать для себя каждый гик-радиолюбитель так как это легко, а результат просто впечатляющий!

Часы пропеллер на Arduino NANO своими руками

Что понадобится чтобы сделать вращающиеся часы:

  • Arduino NANO;
  • Яркие красные светодиоды – 11 шт;
  • Яркие зелёные светодиоды – 5 шт;
  • Синий светодиод – 1 шт;
  • Резисторы 330 Ом – 16 шт;
  • Резистор 2,2 кОм – 1 шт;
  • Резистор 10 кОм – 1шт;
  • Датчик Холла W130;
  • Макетная плата;
  • Небольшой неодимовый магнит;
  • Двигатель от кассетного магнитофона;
  • Аккумулятор – 3,7 В, 240 мА/ч.

Как сделать часы-пропеллер, пошаговая инструкция:

Часы-пропеллер будем собирать по такой схеме:

Часы пропеллер на Arduino NANO своими руками

Отрежем от макетной платы полоску, на ней будет размещаться вся схема часов-пропеллера вместе с аккумулятором и Ардуино.

Часы пропеллер на Arduino NANO своими руками

Размещаем в линию светодиоды на макетной плате, катоды светодиодов будут спаиваться вместе, поэтому загибаем их к верху в одном направлении, а анод в бок, к каждому из этих анодов будет припаян ограничивающий ток резистор на 330 Ом.

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

На фото пока нет самого крайнего синего светодиода, который будет сигнализатором, что на часы подано питание и который будет вырисовывать внешнюю красивую синюю рамку. Так что можете сразу его впаять, я это сделал позже, ему также понадобится резистор, на этот раз 2,2 кОм.

На другом конце платы припаиваем коннекторы под плату Ардуино, чтобы плата могла в любое время без проблем быть извлечена из схемы часов. Плата не должна располагаться на самом конце мекетной платы, должно оставаться немного места для противовеса, который установим чуть позже. Вставляем плату Arduino на своё место.

Часы пропеллер на Arduino NANO своими руками

Соединяем проводниками ножки Ардуины со светодиодами согласно схемы.

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Теперь подключим датчик Холла.

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Припаиваем два пина для джампера который будет подключать питание от аккумулятора, чуть позже к этим контактам я подпаяю микропереключатель, и также два пина под подключение аккумулятора, который будет съёмным. Аккумулятор я притянул к передней части Ардуино с помощью резинки.

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Между платой Arduino и светодиодами я просверлил отверстие. Взял сверло по диаметру вала двигателя надел на неё ролик который стоял на двигателе от кассетного магнитофона, продел свело через отверстие в плате и приклеил этот ролик к макетной плате. Затем взял ещё один точно такой же ролик и надел на сверло (чтобы ролики стояли ровно по оси) с другой стороны платы и также залил термоклеем.

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Также термоклеем я зафиксировал проводники снизу платы в нескольких местах.

Читайте также:  Айфон при разговоре нажимаются кнопки

Часы пропеллер на Arduino NANO своими руками

Всё, теперь можем заливать счетч часов-пропеллера в Ардуино, его Вы можете скачать отсюда.

На скорую руку сделал корпус из косков ДСП и фанеры, покрасил переднюю панель в чёрный цвет, по центру сделал отверстие для вала двигателя, который был прикреплён сзади.

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Также на обратном от светодиоде конце платы, возле Ардуино просверлил отверстие под болтик, на который я накрутил 3 гайки, чтобы был противовес и можно было сбалансировать стороны платы, чтобы не было большого перевеса какой-либо из сторон.

Надеваем на вал двигателя нашу плату. Теперь нужно приклеить неодимовый магнит в верхней части, в том месте где будет проходить датчик Холла.

Часы пропеллер на Arduino NANO своими руками

Теперь начинаем плавно подавать напряжение, чтобы часы отрегулировать таким образом, чтобы отметка 12 часов была точно вверху.

Часы пропеллер на Arduino NANO своими руками

Когда я убедился, что всё работает отлично, я припаял синий светодиод «состояния часов» и также подпаял выключатель питания.

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Всё, самодельные часы-пропеллер готовы! Чтобы их включить надо сначала переключить выключатель на плате во включенное состояние, при этом загорится синий крайний светодиод, а затем уже подаём питание на двигатель, настраивая на лабораторном БП необходимое напряжение, чтобы циферблат выровнялся.

Часы пропеллер на Arduino NANO своими руками

Часы пропеллер на Arduino NANO своими руками

Внизу Вы видите аналоговые часы совмещённые с цифровыми и дополнительной надписью, это моя экспериментальная прошивка. Надеюсь Вам понравилась данная самоделка и Вы повторите её, так как она не сложная на самом деле.

Часы пропеллер на Arduino NANO своими руками

Arduino своими руками — Сайт arduino-hobby!

Ну вот и настало время освоить платформу для duino самостоятельно. Для начала разберемся, что нам может потребоваться. Для начал было бы не плохо определиться, на базе чего мы будем делать наш экземпляр отладочной платы. Чтобы упростить изначальную задачу, я предлагаю использовать USB-(UART)TTL адаптер для загрузки скетчей. Это упростит нам жизнь в разы. лично я буду использовать дешевенький адаптер, заказанный в ныне несуществующем интернет-магазине, но все также рабочий.

При построении нашей Duino будем стараться использовать минимальное количество элементов. По мере освоения будем добавлять необходимые компоненты.

Для ознакомления найдем схемы различных платформ на официальном сайте:

На мой взгляд схемы хорошие, но неплохо было бы посмотреть уже проверенные реализации «самоделок», мне очень понравились 3 варианта:

http://zelectro.cc/DIY/arduino-usb (с USB пока не заморачиваемся, отсюда возьмем отличную схему)

Соорудим минимальную обвязку нашему устройству.На первом этапе деталей необходимо минимум:

— собственно сам МК atmega328P (в моем случае, хотя может использоваться и 168 и 8)

— конденсатор 22pF x 2шт.

— кнопка сброса (любая, кстати не обязательный элемент)

Вот в принципе и все, что минимально необходимо для работы микроконтроллера. Я предлагаю все наши работы иллюстрировать и проектировать в очень не плохой программке Fritzing:

Ну вот, давайте разберемся, зачем нужны данные элементы. Кнопка позволяет перезапустить микроконтроллер, резистор R1 является подтягивающим резистором для кнопки. Кварц, C1 и C2 являются внешним тактовым генератором для контроллера.

Это необходимая и достаточная обвязка, но лично я настоятельно Вам рекомендую установить керамический конденсатор 100nF параллельно основному питанию микросхемы.

Ну вот и готова наша минимальная Duino. Для того, чтобы удобнее было использовать данный отладочный инструмент, я предлагаю наклеивать на корпус подсказку с распиновкой «атмеги». Мой вариант реализован в Corel Draw:

Для начала соберем схему нашей Duino на беспаечной макетной плате, вот что получилось у меня:

Для загрузки скетчей мы будем использовать USB — TTL адаптер, на фото мой уже изрядно потрепавшийся адаптер на базе микросхемы CP2102:

Но перед загрузкой скетчей необходимо залить бутлоадер в МК, иначе, он «не поймет», что мы от него хотим. Есть масса способов, но мы будем использовать простейший. При помощи замечательного программатора USBasp:

Читайте также:  Playstation 4 fat или slim

Для начала подключим нашу Duino к программатору, это очень просто, достаточно соединить контакты программатора с Duino:

GND — масса (22 нога)

RES — перезагрузка (1 нога)

+5V — питание «+» (7 нога)

Далее, открываем Arduino IDE -> Сервис -> Программатор выбираем: «USBasp».

Затем Arduino IDE -> Сервис -> «Записать загрузчик»:

В процессе записи загрузчика придется подождать около 2 минут. После этого нам могут выпасть разнообразные «warning», типа «can not set SCK period» — не пугаемся и идем дальше.

Ну чтож, вот мы и готовы записать тестовый скетч «Blink» в наш новоиспеченный Duino, но есть один момент, и на нем я хотел бы остановиться. Как мы уже говорили для записи скетчей используется последовательный порт, но в «обычной» жизни МК это цифровые порты 0 и 1. Все очень просто, мы уже залили бутлоадер, он инициализирует запись новой прошивки при включении в течении нескольких секунд, после этого Duino начинает выполнять программу, которая записана у нее в памяти.

Чтобы перевести Duino в режим «приема», необходимо перезагрузить МК, для этого мы сделали специальную кнопку, но нажать ее нужно строго в определенный момент, это совсем не подходит для нас. К счастью на переходниках есть специальный вывод «RST», который достаточно подключить к 1 ноге МК, чтобы автоматически перезагружать Duino перед загрузкой скетча. Подключение очень простое, (переходник — Duino):

GND — масса (22 нога)

RXD — подключить к TXD (3 нога)

TXD — подключить к КXD (2 нога)

5V — питание «+» (7 нога)

RST — перезагрузка (1 нога)

Как Вы заметили контакты приема/передачи подключаются перекрестно. И все бы хорошо, но есть одно «но»: существует огромное множество переходников, а для автоматической перезагрузки МК необходимо внедрить конденсатор на 100pF в разрыв цепи RST — перезагрузка (1 нога). В некоторых адаптерах он есть, а в некоторых — увы нет. Тут нужно только проверять, в моем экземпляре встроенного конденсатора не оказалось. В итоге схема немного «усложнилась»:

Ну что же, теперь можно загрузить скетч в памяти Duino и попробовать провести несколько экспериментов =) (на фото добавлены светодиоды — индикаторы загрузки скетча):

А зачем было так разжевывать все эти и так понятные вещи, почему нельзя было сразу нарисовать схему рабочей Duino и не мучить читателей «многобукав»? А затем, что иначе никто даже не задумался бы зачем та или иная деталь в Duino, а когда работаешь с отладочным инструментом — необходимо знать все его тонкости и особенности.

В дополнение выкладываю все «сырцы» проектов во Fritzing:

10 интересных вещей, которые можно сделать на Arduino

Если у вас есть тяга к тех­но­ло­ги­ям (или ребё­нок с такой тягой), рас­смот­ри­те Arduino. Эта шту­ка оза­да­чит вас и ребён­ка на мно­го часов, а на выхо­де полу­чат­ся уди­ви­тель­ные про­ек­ты.

Что за Arduino

Arduino — это про­грам­ми­ру­е­мый мик­ро­кон­трол­лер. То есть это пла­та, на кото­рую мож­но запи­сать вашу про­грам­му, и эта пла­та смо­жет управ­лять дру­ги­ми шту­ка­ми: напри­мер, зажечь лам­поч­ку, издать звук, вклю­чить элек­тро­при­бор, изме­рить тем­пе­ра­ту­ру, отпра­вить СМС.

На самом базо­вом уровне Arduino про­сто отправ­ля­ет и счи­ты­ва­ет элек­три­че­ские импуль­сы. Напри­мер, мож­но под­клю­чить к нему тер­мо­метр, и Arduino смо­жет счи­тать тем­пе­ра­ту­ру в ком­на­те. А потом, в зави­си­мо­сти от про­грам­мы, отпра­вить сиг­нал на устрой­ство, кото­рое вклю­чит вен­ти­ля­тор.

Или мож­но под­клю­чить к Arduino дат­чик угле­кис­ло­го газа. Arduino мож­но научить счи­ты­вать пока­за­ния дат­чи­ка каж­дые пять минут и, когда уро­вень угле­кис­ло­го газа пре­вы­ша­ет нор­му, запи­щать, зами­гать лам­поч­кой или с помо­щью серии мотор­чи­ков открыть окно.

К Arduino есть мно­го плат рас­ши­ре­ния и дат­чи­ков. Сфе­ры при­ме­не­ния пла­ты почти без­гра­нич­ны: авто­ма­ти­за­ция, систе­мы без­опас­но­сти, умный дом, музы­ка, робо­то­тех­ни­ка и мно­гое дру­гое. Вот что мож­но делать на этой умной ита­льян­ской пла­те и на её рос­сий­ских и зару­беж­ных кло­нах.

1. Робот-бармен с Bluetooth-управлением

Слож­ность: 4/5.

Вре­мя: 5/5.

Неза­ме­ни­мое устрой­ство для любой вече­рин­ки: рабо­та­ет от вось­ми бата­ре­ек, гото­вит мно­го кок­тей­лей и управ­ля­ет­ся без про­во­дов. В осно­ве меха­ни­че­ско­го бар­ме­на — пла­та Arduino, при­во­ды для пози­ци­о­ни­ро­ва­ния шей­ке­ра и пода­чи напит­ков, дат­чи­ки поло­же­ний.

Глав­ная слож­ность при изго­тов­ле­нии — инже­нер­ная. Нуж­но точ­но при­кру­тить все дета­ли и соеди­нить их меж­ду собой, что­бы ёмкость ока­зы­ва­лась точ­но под нуж­ны­ми бутыл­ка­ми.

Читайте также:  Акт выборочного вскрытия грунта заземляющего устройства

2. Светящийся куб на 512 светодиодов

Слож­ность: 3/5.

Вре­мя: 3/5.

Кра­си­вая шту­ка, кото­рая может све­тить­ся в такт музы­ке как трёх­мер­ный эква­лай­зер и пока­зы­вать 3D-анимацию. А ещё это может рабо­тать как необыч­ный ноч­ник.

Для сбор­ки пона­до­бит­ся дере­вян­ное шас­си с отвер­сти­я­ми, что­бы каж­дый ярус был таким же по раз­ме­ру и фор­ме, что и осталь­ные. Чис­ло све­то­ди­о­дов в каж­дой гра­ни выбра­но не слу­чай­но: 8 ламп = 8-битная логи­ка, самая про­стая в про­грам­ми­ро­ва­нии и управ­ле­нии через кон­трол­лер.

3. Взломщик кодовых замков

Слож­ность: 5/5.

Вре­мя: 4/5.

Этот про­ект раз­ра­бо­тал хакер Сэми Кам­кар, и мы при­во­дим его толь­ко в демон­стра­ци­он­ных целях. Для взло­ма, кро­ме пла­ты Arduino, автор взял серво- и шаго­вый дви­га­те­ли для пере­бо­ра ком­би­на­ций и соеди­нил всё на само­дель­ном шас­си из алю­ми­ния. В осно­ве алго­рит­ма — про­стой пере­бор всех ком­би­на­ций, но робот это дела­ет быст­рее чело­ве­ка.

4. Nod Bang — киваем головой и делаем бит

Слож­ность: 2/5.

Вре­мя: 3/5.

Идея в том, что­бы не про­сто кивать в такт музы­ке, а кив­ка­ми само­му гене­ри­ро­вать звук. Энд­рю Ли сде­лал спе­ци­аль­ное устрой­ство, кото­рое сле­дит за поло­же­ни­ем голо­вы и в момент накло­на вос­про­из­во­дит нуж­ный звук.

В науш­ни­ки он встро­ил аксе­ле­ро­метр, кноп­ки отве­ча­ют за выбор зву­ка, а Arduino — за вос­про­из­ве­де­ние зву­ка на ком­пью­те­ре через MIDI-интерфейс. Что­бы всё выгля­де­ло эффект­нее, у кно­пок есть под­свет­ка, и они тоже дела­ют бит.

5. Поющее растение

Слож­ность: 2/5.

Вре­мя: 2/5.

По сути это тер­мен­вокс, кото­рый сде­ла­ли в виде рас­те­ния. Все осталь­ные прин­ци­пы рабо­ты оста­лись теми же: звук воз­ни­ка­ет при дви­же­нии рук, и раз­ные дви­же­ния гене­ри­ру­ют раз­ную мело­дию.

Пла­та реги­стри­ру­ет изме­не­ние ампли­ту­ды сиг­на­ла, для чего автор исполь­зу­ет само­дель­ный сен­сор­ный детек­тор для ана­ли­за при­кос­но­ве­ний к цвет­ку. Кро­ме это­го пона­до­би­лась пла­та рас­ши­ре­ния Gameduino и сам цве­ток.

6. Замок, который открывается на секретный стук

Слож­ность: 3/5.

Вре­мя: 2/5.

Инте­рес­ная вещь для тех, кто хочет поиг­рать в шпи­о­нов или пус­кать в ком­на­ту толь­ко сво­их дру­зей. Замок рас­по­зна­ёт стук по две­ри и срав­ни­ва­ет его с базо­вым зву­ча­ни­ем, кото­рое уста­но­вил вла­де­лец. Если сов­па­да­ет — при­во­ды ото­дви­га­ют замок и дверь откры­ва­ет­ся, если нет — ниче­го не про­ис­хо­дит, мож­но посту­чать зано­во.

Что­бы уста­но­вить новый стук на откры­тие, нуж­но зажать кноп­ку на руч­ке и посту­чать по две­ри новым спо­со­бом. Пье­зо­сен­сор рас­по­зна­ёт виб­ра­ции и запи­сы­ва­ет их в память пла­ты.

7. Горшок для цветов с автополивом

Слож­ность: 4/5.

Вре­мя: 3/5.

Полез­ный гор­шок для тех, кто забы­ва­ет полить цве­ты перед отъ­ез­дом или про­сто не зна­ет, как часто надо их поли­вать. Вся элек­тро­ни­ка, насо­сы и ёмкость для воды нахо­дят­ся внут­ри горш­ка. Для каж­до­го рас­те­ния мож­но запро­грам­ми­ро­вать свой режим поли­ва в каж­дом горш­ке.

Основ­ные харак­те­ри­сти­ки чудо-горшка:

  • встро­ен­ный резер­ву­ар для воды;
  • дат­чик кон­тро­ля уров­ня влаж­но­сти поч­вы;
  • насос для пода­чи воды;
  • дат­чик уров­ня воды в резер­ву­а­ре;
  • све­то­ди­од, инфор­ми­ру­ю­щий о недо­стат­ке воды в резер­ву­а­ре.

8. Драм-машина

Слож­ность: 1/5.

Вре­мя: 2/5.

Про­стая драм-машина на Arduino. Про­ект инте­ре­сен тем, что это не обыч­ный пере­бор запи­сан­ных семплов, а насто­я­щая гене­ра­ция зву­ка с помо­щью встро­ен­но­го желе­за. Ещё здесь есть ана­ли­за­тор спек­тра зву­ка: через видео­вы­ход мож­но посмот­реть на диа­грам­мы и частот­ные харак­те­ри­сти­ки.

Мате­ма­ти­че­ская осно­ва это­го устрой­ства — раз­ло­же­ние в ряд Фурье, кото­рое реша­ет­ся под­клю­че­ни­ем стан­дарт­ной биб­лио­те­ки.

9. Шагающий робот

Слож­ность: 2/5.

Вре­мя: 1/5.

Про­стой в изго­тов­ле­нии четы­рёх­но­гий робот, кото­рый шага­ет и само­сто­я­тель­но пре­одо­ле­ва­ет пре­пят­ствия в сан­ти­метр высо­той.

Что­бы его сде­лать, вам пона­до­бят­ся сер­во­мо­то­ры для ног, немно­го про­во­ло­ки и любой пла­стик, из кото­ро­го дела­ет­ся шас­си. Для пита­ния — акку­му­ля­тор любой моде­ли, кото­рый кре­пит­ся на спине робо­та.

10. Робот-пылесос

Слож­ность: 4/5.

Вре­мя: 5/5.

Дмит­рий Ива­нов из Сочи собрал насто­я­щий робот-пылесос, кото­рый дела­ет всё то же самое, что и про­мыш­лен­ные устрой­ства, толь­ко с воз­мож­но­стью тон­кой настрой­ки под себя и свою квар­ти­ру.

Основ­ные дета­ли — пла­та Arduino, 6 инфра­крас­ных дат­чи­ков, тур­би­на с дви­га­те­лем и щёт­ка­ми и акку­му­ля­тор. Ещё у робо­та есть дат­чи­ки столк­но­ве­ния, кото­рые помо­га­ют объ­ез­жать пре­пят­ствия, и кон­трол­лер акку­му­ля­то­ра, кото­рый сле­дит за уров­нем бата­рей и пре­ду­пре­жда­ет о том, что пыле­сос надо заря­дить.

IC-Stroy.ru