Аналогово цифровое преобразование лежит в основе кодирования

Как происходит преобразование аналогового сигнала в цифровой

В электронике сигналы делят на: аналоговые, дискретные и цифровые. Начнем с того, что все, что мы чувствуем, видим, слышим в большинстве своем является аналоговым сигналом, а то, что видит процессор компьютера – это цифровой сигнал. Звучит не совсем понятно, поэтому давайте разбираться с этими определениями и с тем как один вид сигналов преобразовывается в другой.

Типы сигналов

В электрическом представлении аналоговый сигнал, судя по его названию, является аналогом реальной величины. Например, вы чувствуете температуру окружающей среды постоянно, на протяжении всей жизни. Нет никаких перерывов. При этом вы чувствуете не только два уровня «горячо» и «холодно», а бесконечное число ощущений, которые описывают эту величину.

Для человека «холодно» может быть по разному, это и осенняя прохлада и зимний мороз, и легкие заморозки, но не всегда «холодно» это отрицательная температура, как и «тепло» — не всегда положительная температура.

Отсюда следует, что у аналогового сигнала две особенности:

1. Непрерывность во времени.

2. Число величин сигнала стремится к бесконечности, т.е. аналоговый сигнал нельзя точно поделить на части или проградуировать, разбив шкалу на конкретные участки. Способы измерения – основаны на единице измерений, и их точность зависит лишь от цены деления шкалы, чем она меньше, тем точнее измерение.

Дискретные сигналы – это сигналы, которые представляют собой последовательность отчетов или измерений какой-либо величины. Измерения таких сигналов не непрерывны, а периодичны.

Попытаюсь объяснить. Если вы установили термометр где-нибудь он измеряет аналоговую величину – это следует из вышеописанного. Но вы, фактически следя за его показаниями, получаете дискретную информацию. Дискретный – значит отдельный.

Например, вы проснулись и узнали, сколько градусов на термометре, в следующий раз вы на него посмотрели на градусник в полдень, и третий раз вечером. Вы не знаете, с какой скоростью изменялась температура, равномерно, или резким скачком, вы знаете только данные в тот момент времени, который наблюдали.

Цифровые сигналы – это набор уровней, типа 1 и 0, высокий и низкий, есть или нет. Глубина отражения информации в цифровом виде ограничена разрядностью цифрового устройства (набора логики, микроконтроллера, процессора etc.) Получается что для хранения булевых данных он подходит идеально. Пример, можно привести следующий, для хранений данных типа «День» и «Ночь», достаточно 1 бита информации.

Бит – это минимальная величина представления информации в цифровом виде, в нём может храниться только два типа значений 1 (логическая единица, высокий уровень), или 0 (логический ноль, низкий уровень).

В электронике бит информации представляется в виде низкого уровня напряжения (близкое к 0) и высокого уровня напряжения (зависит от конкретного устройства, часто совпадает с напряжением питания данного цифрового узла, типовые значения – 1.7, 3.3. 5В, 15В).

Все промежуточные значения между принятыми низким и высоким уровнем являются переходной областью и могут не обладать конкретным значением, в зависимости от схемотехники, как устройства в целом, так и внутренней схемы микроконтроллера (или любого другого цифрового устройства) могут иметь разный переходный уровень, например для 5-тивольтовой логики за ноль могут приниматься значения напряжения от 0 до 0.8В, а за единицу от 2В до 5В, при этом промежуток между 0.8 и 2В – это неопределенная зона, фактически с ее помощью отделяется ноль от единицы.

Чем более точные и ёмкие значения нужно хранить, тем больше нужно бит, приведем таблицу-пример с отображением в цифровом виде четырёх значений времени суток:

Ночь – Утро – День – Вечер

Для этого нам нужно уже 2 бита:

Аналогово-цифровое преобразование

В общем случае аналогово-цифровым преобразованием называется процесс перевода физической величины в цифровое значение. Цифровым значением является набор единиц и нолей воспринятых обрабатывающим устройством.

Такое преобразование нужно для взаимодействия цифровой техники с окружающей средой.

Так как аналоговый электрический сигнал повторяет своей формой входной сигнал, он не может быть записан в цифровом виде «так как есть» поскольку он имеет бесконечное число значений. Примером можно привести процесс записи звука. Он в первичном виде выглядит так:

Он представляет собой сумму волн с различными частотами. Которые, при разложении по частотам (подробнее об этом смотрите преобразования Фурье), так или иначе, можно приблизить к похожей картинке:

Теперь попробуйте это представить в виде набора типа «111100101010100», довольно сложно, не так ли?

Другим примером необходимости преобразования аналоговой величины в цифровую, является её измерение: электронные термометры, вольтметры, амперметры и прочие измерительные приборы взаимодействую с аналоговыми величинами.

Как происходит преобразование?

Сначала посмотрите на схему типового преобразования аналогового сигнала в цифровой и обратно. Позже мы к ней вернемся.

Фактически это сложный процесс, который состоит из двух основных этапов:

1. Дискретизация сигнала.

2. Квантование по уровню.

Дискретизация сигнала это определения промежутков времени, на которых измеряется сигнал. Чем короче эти промежутки – тем точнее измерение. Периодом дискретизации (Т) называется отрезок времени от начала считывания данных до его конца. Частота дискретизации (f) – это обратная величина:

После считывания сигнала происходит его обработка и сохранение в память.

Получается, что за время, которое считываются и обрабатываются показания сигнала, он может измениться, таким образом, происходит искажение измеряемой величины. Есть такая теорема Котельникова и из нее вытекает такое правило:

Частота дискретизации должны быть как минимум в 2 раза больше чем частота дискретизируемого сигнала.

Это скриншот из википедии, с выдержкой из теоремы.

Для определения численного значение необходимо квантование по уровню. Квант – это определенный промежуток измеряемых значений, усреднено приведенный к определенному числу.

Т.е. сигналы величиной от X1 до X2, условно приравнивается к определенному значению Xy. Это напоминает цену деления стрелочного измерительного прибора. Когда вы снимаете показания, зачастую вы их равняете по ближайшей отметке на шкале прибора.

Так и с квантованием по уровню, чем больше квантов, тем более точные измерения и тем больше знаков после запятой (сотых, тысячных и так далее значений) они могут содержать.

Точнее сказать число знаков после запятой скорее определяется разрядностью АЦП.

На картинке изображен процесс квантования сигнала с помощью одного бита информации, как я описывал выше, когда при превышении определенного предела принимается значение высокого уровня.

Справа показано квантование сигнала, и запись в виде двух бит данных. Как видите, этот фрагмент сигнала разбит уже на четыре значения. Получается, что в результате плавный аналоговый сигнал превратился в цифровой «ступенчатый» сигнал.

Количество уровней квантования определяется по формуле:

Где n — количество разрядов, N — уровень квантования.

Вот пример сигнала разбитого на большее число квантов:

Отсюда очень хорошо видно, что чем чаще снимаются значения сигнала (больше частота дискретизации), тем точнее он измеряется.

На этой картинке изображено преобразование аналогового сигнала в цифровой вид, а слева от оси ординат (вертикальной оси) запись в цифровом 8-битном виде.

Аналогово-цифровые преобразователи

АЦП или Аналогово-цифровой преобразователь может выполняться в виде отдельного устройства или быть встроенным в микроконтроллер.

Ранее в микроконтроллеры, например семейства MCS-51, не содержали в своем составе АЦП, использовалась для этого внешняя микросхема и возникала необходимость писать подпрограмму обработки значений внешней ИМС.

Сейчас они есть в большинстве современных микроконтроллеров, например AVR AtMEGA328, который является основой большинства популярных плат Ардуино, он встроен в сам МК. На языке Arduino чтение аналоговых данных осуществляется просто – командой AnalogRead(). Хотя в микропроцессоре, который установлен в той же не менее популярной Raspberry PI его нет, так что не все так однозначно.

Фактически существует большое число вариантов аналогово-цифровых преобразователей, у каждого из которых есть свои недостатки и преимущества. Описывать которые в пределах этой статьи не имеет особого смысла, так как это большой объём материала. Рассмотрим лишь общую структуру некоторых из них.

Самым старым запатентованным вариантом АЦП, является патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Это 5-ти битный АЦП прямого преобразования. Из названия патента приходят мысли о том, что использование этого прибора было связано с передачей данных через телеграф.

Если говорить о современных АЦП прямого преобразования имеют следующую схему:

Отсюда видно, что вход представляет собой цепочку из компараторов, которые на выходе своем выдают сигнал при пересечении какого-то порогового сигнала. Это и есть разрядность и квантование. Кто хоть немного силен в схемотехнике, увидел этот очевидный факт.

Читать еще:  Patriot specific high tech 5w30 sj cf

Кто не силен, то входная цепь работает таким образом:

Аналоговый сигнал поступает на вход «+», на все сразу. На выходы с обозначением «-» поступает опорное напряжение, которое раскладывается с помощью цепочки резисторов (резистивного делителя) на ряд опорных напряжений. К примеру, ряд для этой цепи выглядит наподобие такого соотношения:

Urefi=(1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16)*Uref

В скобках через запятую указано, какую часть от общего опорного напряжения Uref подают на вход каждого входного напряжения.

Т.е. каждый из элементов имеет два входа, когда напряжение на входе со знаком «+» превышает напряжение на входе со знаком «-», то на его выходе появляется логическая единица. Когда на положительном (неинвертирующем) входе напряжение меньше, чем на отрицательно (инвертирующем), то на выходе – ноль.

Напряжение делиться таким образом, чтобы входное напряжение разбить на нужное количество разрядов. При достижении напряжения на входе на выходе соответствующего элемента появляется сигнал, схема обработки выводит «правильный» сигнал в цифровом виде.

Такой компаратор хорош скоростью обработки данных, все элементы входной цепи срабатывают параллельно, основная задержка этого вида АЦП формируется из задержки 1 компаратора (все же одновременно параллельно срабатывают) и задержки шифратор.

Однако есть огромный недостаток параллельных цепей – это необходимость большого числа компараторов, для получения АЦП высокой разрядности. Чтобы получить, например 8 разрядов, нужно 2^8 компараторов, а это целых 256 штук. Для десятиразрядного (в ардуино 10-разрядный АЦП, кстати, но другого типа) нужно 1024 компаратора. Судите сами о целесообразности такого варианта обработки, и где он может понадобиться.

Есть и другие виды АЦП:

Заключение

Преобразование аналогового сигнала в цифровой нужно для считывания параметров с аналоговых датчиков. Есть отдельный вид цифровых датчиков, они представляют собой либо интегральные микросхемы, например DS18b20 – на его выходе уже цифровой сигнал и его можно обрабатывать любыми микроконтроллерами или микропроцессорами без необходимости применения АЦП, или аналоговый датчик на плате на которой уже размещен свой преобразователь. У каждого типа датчиков есть свои плюсы и минусы, такие как помехоустойчивость и погрешность измерений.

Знание принципов преобразование обязательно для всех кто работает с микроконтроллерами, ведь не в каждой даже современной системе встроены такие преобразователи, приходится использовать внешние микросхемы. Для примера можно привести такую плату, разработанную специально под GPIO-разъём Raspberry PI, с прецизионным АЦП на ADS1256.

50. Основные принципы аналого-цифрового преобразования. Ацп и цап.

Аналого-цифровые преобразователи (АЦП) являются устройствами, которые принимают входные аналоговые сигналы и генерируют соответствующие им цифровые сигналы, пригодные для обработки микропроцессорами и другими цифровыми устройствами.

Аналого-цифровой преобразователь [1][2][3] (АЦП, англ.Analog-to-digital converter, ADC) — устройство, преобразующее входной аналоговый сигналв дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП (цифро-аналогового преобразователя, DAC).

Как правило, АЦП — электронноеустройство, преобразующеенапряжениев двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства с цифровым выходом, следует также относить к АЦП, например, некоторые типыпреобразователей угол-код. Простейшим одноразрядным двоичным АЦП являетсякомпаратор.

Цифро-аналоговый преобразователь (ЦАП) — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал(ток,напряжениеилизаряд). Цифро-аналоговые преобразователи являютсяинтерфейсоммежду дискретным цифровым миром и аналоговыми сигналами.

Аналого-цифровой преобразователь(АЦП) производит обратную операцию.

Звуковой ЦАП обычно получает на вход цифровой сигнал в импульсно-кодовой модуляции(англ.PCM, pulse-code modulation). Задача преобразования различных сжатых форматов в PCM выполняется соответствующими кодеками.

Принцип аналого-цифрового преобразования информации.

В большинстве случаев получаемый непосредственно от источника информации сигнал оказывается представленным в форме непрерывно меняющегося по своему значению напряжения либо тока (рис. 10.69). Таков, в частности, характер электрического сигнала, соответствующего телефонным, телевизионным и другим видам сообщения. Для передачи таких сообщений по линии связи или для их обработки (например, при отфильтровании помех) могут быть использованы две формы: аналоговая или цифровая. Аналоговая форма предусматривает оперирование со всеми значениями сигнала, цифровая форма с отдельными его значениями, представленными в форме кодовых комбинаций. Преобразование сигналов из аналоговой формы в цифровую выполняется в устройстве, называемом аналого-цифровым преобразователем (АЦП). В преобразователе сигналов из аналоговой формы в цифровую можно выделить следующие процессы: дискретизацию, квантование, кодирование. Рассмотрим сущность этих процессов. При этом для определенности в последующем изложении будем считать, что преобразование в цифровую форму осуществляется над сигналом, представленным в форме меняющегося во времени напряжения.

Дискретизация непрерывных сигналов. Процесс дискретизации заключается в том, что из непрерывного во времени сигнала выбираются отдельные его значения, соответствующие моментам времени, следующим через определенный временной интервал Т (на рис. 10.69 моменты). Интервал Т называется тактовым интервалом времени, а моменты временив которые берутся отсчеты, — тактовыми моментами времени.

Следующая операция, выполняемая при аналого-цифровом преобразовании сигналов, — кодирование. Смысл ее состоит в следующем. Округление значения напряжения, осуществляемое при операции квантования, позволяет эти значения представлять числами — номерами соответствующих уровней квантования. Для диаграммы, представленной на рис. 10.70, образуется последовательность чисел: 3, 6, 7, 4, 1, 2 и т.д. Далее, получаемая таким образом последовательность чисел представляется двоичным кодом.

Цифро-аналоговые преобразователи Ниже будут рассмотрены цифро-аналоговые преобразователи (ЦАП), построенные по принципу суммирования напряжений или токов, пропорциональных весовым коэффициентам двоичного кода. Схема ЦАП с суммированием напряжений. Одна из таких схем с суммированием напряжений на операционном усилителе приведена на рис. 10.71. Триггеры образуют регистр, в который помещаются двоичные числа, предназначенные для перевода в пропорциональные им значения напряжения на выходе. Будем считать, что напряжение на выходе каждого из триггеров может принимать одно из двух возможных значений: Е — при состоянии 1 и 0 при состоянии 0. Напряжения с выходов триггеров передаются на выход ЦАП через операционный усилитель, работающий в режиме взвешенного суммирования напряжений (аналогового сумматора). Для каждого триггера предусматривается отдельный вход в сумматоре с определенным коэффициентом передачи. Таким образом, напряжение с выхода триггера n-го разряда передается на выход усилителя с коэффициентом передачи:; этот коэффициент для (n-1)-го разряда:; для (n-2)-го разряда:и т. д.

Если в состоянии 1 находятся одновременно триггеры нескольких разрядов, то напряжение на выходе усилителя равно сумме напряжений, передаваемых на этот выход от отдельных триггеров. Пусть цифры отдельных разрядов двоичного числа в регистре . Тогда напряжение на выходе усилителяЗдесь N — десятичное значение двоичного числа, введенного в регистр. Из последнего выражения видно, что напряжение на выходе ЦАП пропорционально значению числа в регистре. Рассмотрим работу ЦАП в случае, когда на триггерахпостроен двоичный счетчик. Если подать на вход этого счетчика последовательность импульсов, то с приходом каждого очередного импульса число в счетчике будет увеличиваться на единицу и напряжение на выходе ЦАП будет возрастать на ступеньку, соответствующую единице младшего разряда счетчика. Величина такой ступеньки. Таким образом, напряжение на выходе ЦАП будет иметь ступенчатую форму, как показано на рис. 10.72. После поступленияимпульсов все разряды счетчика будут содержать 1, на выходе ЦАП образуется максимальное напряжение

Недостатки рассмотренной схемы преобразователя:

используются высокоточные резисторы с различными сопротивлениями;

трудно обеспечить высокую точность выходного напряжения триггеров

Аналого-цифровое преобразование

Рубрика: Технические науки

Дата публикации: 15.01.2017 2017-01-15

Статья просмотрена: 1865 раз

Библиографическое описание:

Магеррамов Р. В. Аналого-цифровое преобразование // Молодой ученый. — 2017. — №2. — С. 152-155. — URL https://moluch.ru/archive/136/38098/ (дата обращения: 17.01.2020).

Аналого-цифровое преобразование играет важную роль в современной электронной индустрии. Аналого-цифровой преобразователь (АЦП) позволяет получить цифровой код из непрерывного входного аналогового сигнала.

Область применения аналого-цифрового преобразования:

– Цифровые измерительные приборы

– Автоматизированные системы контроля и управления

– Системы преобразования и отображения данных

– Программируемые источники сигналов

– Аудио и видео аппаратура

– Антенные системы базовых станций

Потребность в аналого-цифровых преобразователях стимулирует их разработку и изготовление с новыми, более совершенными характеристиками, что в свою очередь приводит к возникновению новых областей применения.

Процедура преобразования

Преобразования аналогового сигнала включает в себя дискретизацию по времени иквантование по амплитуде входного сигнала.

Рис. 1. График дискретизации непрерывной функции

Аналого-цифровое преобразование включает в себя:

– Дискретизацию исходных аналоговых данных по времени, то есть происходит выборка значений входного аналогового сигнала в определенные дискретные моменты времени.

– Квантование полученных значений по уровню (амплитуде), то есть преобразование (округление) значений непрерывной функции до известных величин.

– Оцифровка квантованных данных, то есть замена полученных данных цифровым кодом

Процедура преобразования непрерывной функции реализуется с помощью АЦП (аналого-цифрового преобразователя). Основным и наиболее важным электронным компонентом измерительных и тестовых систем являются аналого-цифровые преобразователи, их точность определяет прецизионность тестового оборудования.

Функция АЦП заключается в преобразование входного аналогового сигнала (напряжения) в цифровой (дискретный) код, который в последствие поступает на различные цифровые блоки схемы, выполняющие необходимые операции с полученными данными. Данный процесс представляет собой преобразования непрерывной функции напряжения в цифровое представление.

Читать еще:  Акционерное общество чебоксарский электроаппаратный завод

Аналого-цифровое преобразование тесно переплетается с понятием измерения. Измерение — это процесс сравнения измеряемой величины с некоторым эталоном, в случае с аналого-цифровым преобразованием, происходит сравнение входного сигнала с опорным (опорным напряжением). Из этого следует, что преобразование есть не что иное, как изменение значения входной величины.

Основные параметры АЦП

Статические

Динамические

Максимальная частота дискретизации (преобразования)

Погрешность полной шкалы

Погрешность смещения нуля

Монотонность характеристики преобразования

Время выборки (стробирование)

Рис. 2. Типы АЦП — график разрешения в зависимости от частоты преобразования АЦП

Разрешающая способность и скорость преобразования являются определяющими параметры АЦП. В зависимости от данных параметров определяется тип архитектуры АЦП, который будет в последствие изготовлен для той или иной системе.

Дискретизация аналогового сигнала

Дискретизация (от лат. discretio — различать) — преобразование непрерывной функции в дискретную функцию. Задача дискретизации заключается в том, что непрерывность во времени аналогового сигнала преобразуется в последовательность цифровых импульсов, уровни которых определяются благодаря весовым функциям (квантование). Точность преобразования аналогового сигнала прямо пропорциональна интервалам разбиения непрерывной функции. Значения дискретного входного сигнала определяются дискретными значениями интервалов времени.

Рис. 3. Дискретизации непрерывного сигнала: а-избыточная; б-нормальная; в-найквистовская; г-неправильная

Теорема Найквиста:

Непрерывная функция (аналоговый сигнал) может быть полностью восстановлена без потери данных по своим дискретным отсчетам только в том случае, если частота дискретизации больше чем в 2 раза максимальной частоты спектра входного сигнала

Fнайкв — частота выборки, Fвх.сигнал — максимальная частота входного сигнала

В случае если частота дискретизации значительно выше частоты Найквиста, то в данном случае пользуются термином передискретизация «oversampling». Для того, что бы получить наиболее точное преобразования входного сигнала, на практике обычно использует максимально возможную частоту преобразования АЦП. Во время преобразования спектр входного сигнала состоит не только из «полезных» данных, но в сигнале возможно наличие различных искажений, которые могут быть вызваны высокочастотными шумами. Для того что бы исключить помехи из «полезного» сигнала используют различные фильтры.

Заключение

В данной статье было рассмотрено понятие аналого-цифрового преобразования и устройства, с помощью которого осуществляется данная операция. Современная наука не стоит на месте, с каждым новым моментов времени технический прогресс неизбежно стремится вперёд, производя на рынок микроэлектроники все новые и более усовершенствованные устройства. АЦП является одним из основных компонентов электроники, которые главным образом применяются для совместного сопряжения цифровых блоков и систем с внешними аналоговыми сигналами.

С помощью АЦП выполняются операции преобразования аналоговых данных в цифровую форму. В данный момент АЦП может быть изготовлено в интегральной микросхеме. Нынешние возможности для реализации различных обработок звука и изображения осуществляются уже в цифровой форме. Но, не смотря на это, в качестве основной периферии (датчиков сигналов, микрофонов, ТВ «трубок» и т. д.), аппаратуры воспроизведения звука и изображения используются аналоговые устройства.

  1. Миндеева А. А. — Элементная база аналоговых схем, учебное пособие, 2012
  2. Алексеенко А. Г. — Основы микросхемотехники. 3-е издание, Лаборатория Базовых знаний: Физматлит Юнимедиастал, 2002
  3. Эннс В. И., Кобзев Ю. М. — Проектирование аналоговых КМОП-микросхем, 2005
  4. Соклоф С. — Аналоговые интегральные схемы, 1988
  5. Опадчий Ю. Ф., Гуров А. И. — Аналоговая и цифровая электроника, 2005
  6. Хоровиц П., Хилл У. — Искусство схемотехники. В трех томах, 2003
  7. Умняшкин С. В. — Теоретические основы цифровой обработки и представления сигналов, ТЕХНОСФЕРА, Москва 2012
  8. Baker R. J., Li H. W., Boyce D. E. — CMOS. Circuit design, Layout, and Simulation (2nd Edition), 2005
  9. Razavi B. — Design of Analog CMOS Integrated Circuits, 2000

Аналогово цифровое преобразование лежит в основе кодирования

6. Аналого-цифровое преобразование сигналов.

Для преобразования любого аналогового сигнала (звука, изображения) в цифровую форму необходимо выполнить три основные операции: дискретизацию, квантование и кодирование.

представление непрерывного аналогового сигнала последовательностью его значений (отсчетов ). Эти отсчеты берутся в моменты времени, отделенные друг от друга интервалом, который называется интервалом дискретизации. Величину, обратную интервалу между отсчетами, называют частотой дискретизации. На рис. 1 показаны исходный аналоговый сигнал и его дискретизированная версия. Картинки, приведенные под временными диаграммами, получены в предположении, что сигналы являются телевизионными видеосигналами одной строки, одинаковыми для всего телевизионного растра.


Рис.1 Аналого-цифровое преобразование. Дискретизация.

Понятно, что чем меньше интервал дискретизации и, соответственно, выше частота дискретизации, тем меньше различия между исходным сигналом и его дискретизированной копией. Ступенчатая структура дискретизированного сигнала может быть сглажена с помощью фильтра нижних частот. Таким образом и осуществляется восстановление аналогового сигнала из дискретизированного. Но восстановление будет точным только в том случае, если частота дискретизации по крайней мере в 2 раза превышает ширину полосы частот исходного аналогового сигнала (это условие определяется известной теоремой Котельникова). Если это условие не выполняется, то дискретизация сопровождается необратимыми искажениями. Дело в том, что в результате дискретизации в частотном спектре сигнала появляютсся дополнительные компоненты, располагающиеся вокруг гармоник частоты дискретизации в диапазоне, равном удвоенной ширине спектра исходного аналогового сигнала. Если максимальная частота в частотном спектре аналогового сигнала превышает половину частоты дискретизации, то дополнительные компоненты попадают в полосу частот исходного аналогового сигнала. В этом случае уже нельзя восстановить исходный сигнал без искажений. Теория дискретизации приведена во многих книгах.


Рис.2 Аналого-цифровое преобразование. Искажение дискретизации.

Пример искажений дискретизации приведен на рис. 2. Аналоговый сигнал (предположим опять, что это видеосигнал ТВ строки) содержит волну, частота которой сначала увеличивается от 0,5 МГц до 2,5 МГц, а затем уменьшается до 0,5 МГц. Этот сигнал дискретизируется с частотой 3 МГц. На рис. 2 последовательно приведены изображения: исходный аналоговый сигнал, дискретизированный сигнал, восстановленный после дискретизации аналоговый сигнал. Восстанавливающий фильтр нижних частот имеет полосу пропускания 1,2 МГц. Как видно, низкочастотные компоненты (меньше 1 МГц) восстанавливаются без искажений. Волна с частотой 1,5 МГц исчезает и превращается в относительно ровное поле. Волна с частотой 2,5 МГц после восстановления превратилась в волну с частотой 0,5 МГц (это разность между частотой дискретизации 3 МГц и частотой исходного сигнала 2,5 МГц). Эти диаграммы-картинки иллюстрируют искажения, связанные с недостаточно высокой частотой пространственной дискретизации изображения. Если объект телевизионной съемки представляет собой очень быстро движущийся или, например, вращающийся предмет, то могут возникать и искажения дискретизации во временной области. Примером искажений, связанных с недостаточно высокой частотой временной дискретизации (а это частота кадров телевизионного разложения), является картина быстро движущегося автомобиля с неподвижными или, например, медленно вращающимися в ту или иную сторону спицами колеса (стробоскопический эффект).Если частота дискретизации установлена, то искажения дискретизации отсутствуют, когда полоса частот исходного сигнала ограничена сверху и не превышает половины частоты дискретизации.

Если потребовать, чтобы в процессе дискретизации не возникало искажений ТВ сигнала с граничной частотой, например, 6 МГц, то частота дискретизации должна быть не меньше 12 Мгц. Однако, чем ближе частота дискретизации к удвоенной граничной частоте сигнала, тем труднее создать фильтр нижних частот, который используется при восстановлении, а также при предварительной фильтрации исходного аналогового сигнала. Это объясняется тем, что при приближении частоты дискретизации к удвоенной граничной частоте дискретизируемого сигнала предъявляются все более жесткие требования к форме частотных характеристик восстанавливающих фильтров — она все точнее должна соответствовать прямоугольной характеристике. Следует подчеркнуть, что фильтр с прямоугольной характеристикой не может быть реализован физически. Такой фильтр, как показывает теория, должен вносить бесконечно большую задержку в пропускаемый сигнал. Поэтому на практике всегда существует некоторый интервал между удвоенной граничной частотой исходного сигнала и частотой дискретизации.

представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин — уровней квантования. Другими словами, квантование — это округление величины отсчета. Уровни квантования делят весь диапазон возможного изменения значений сигнала на конечное число интервалов — шагов квантования. Расположение уровней квантования обусловлено шкалой квантования. Используются как равномерные, так и неравномерные шкалы. На рис. 3 показаны исходный аналоговый сигнал и его квантованная версия, полученная с использованием равномерной шкалы квантования, а также соответствующие сигналам изображения.

Основы цифровой техники

Аналогово-цифровой преобразователь (АЦП)

Аналого-цифровые преобразователи (АЦП) предназначены для преобразования аналоговой величины в цифровой код. Другими словами, АЦП — это устройства, которые принимают аналоговые сигналы и генерируют соответствующие им цифровые.

В принципе, вполне реально осуществить преобразование различных физических величин непосредственно в цифровую форму. Однако, процесс этот весьма сложен и кое-где непригоден. Поэтому наиболее рациональным является сначала преобразование чего-то там в функционально связанные с ними электрические сигналы, а затем с помощью преобразователя напряжение-код в цифровые. Именно последние и понимаются, как АЦП.

Читать еще:  Camelion wl 4002 схема принципиальная

Сама суть преобразования аналоговых величин заключается в представлении некой непрерывной функции (например, напряжения) от времени в последовательность чисел, отнесенных к неким фиксированным моментам времени. Если говорить простым языком, то пусть, к примеру, есть какой-то сигнал (непрерывный) и для преобразования его в цифровой необходимо этот самый сигнал представить в виде последовательности определенных чисел, каждое из которых относится к определенному моменту времени. Для преобразования аналогового (непрерывного) сигнала в цифровой необходимо выполнить три операции:дискретизация, квантование и кодирование. Во многих умных книжках последняя операция исключается. Об этом немного ниже. Итак, разберем пока непонятные понятия.

Дискретизация — это представление непрерывной функции (т. е. какого-то сигнала) в виде ряда дискретных отсчетов (по-буржуйски дискрет означает отличный, различный). По-другому можно сказать, что дискретизация — это преобразование непрерывной функции в непрерывную последовательность. Давайте глянем на рисунок 1, где изображен принцип дискретизации.

На рисунке показана наиболее распространенная равномерная дискретизация. Сначала имеется непрерывный сигнал S(t). Затем он подвергается разбиению на равные промежутки времени Δt. Вот эти промежутки «дельта тэ» и есть дискретные отсчеты, называемые периодами дискретизации. В результате получается последовательность отсчетов (дискретных) с шагом в Δt. По сути в основе дискретизации непрерывных сигналов лежит возможность представления их, т. е. сигналов в виде взвешенных сумм некоторых коэффициентов, обозначим их как ai, иначе называемых отсчетами, и набора элементарных функций, обозначим их как fi(t), используемых при восстановлении сигнала по его отсчетам.

Период дискретизации выбирается из условия:

где Fв — максимальная частота спектра сигнала. Это выражение есть не что иное, как теорема Котельникова, которая гласит: Любой непрерывный сигнал можно абсолютно точно восстановить на выходе идеального полосового фильтра (ПФ) с полосой Fв, если дискретные отсчеты взяты через интервал Δt = 1 / 2Fв. А это значит, что частота дискретизации должна быть вдвое больше максимальной частоты сигнала. На практике, например, это хорошо иллюстрирует обычный компакт диск (КД или CD) или, как его называют, AudioCD. КД записывают с частотой дискретизации 44,1 кГц. А это значит, что максимальная верхняя частота будет равна 22 кГц, что, как считается, вполне достаточно для уха человека (помните, частотный диапазон для уха человека равен 20. 20 000 Гц).

При квантовании шкала сигнала разбивается на уровни. Отсчеты помещаются в подготовленную сетку и преобразуются в ближайший номер уровня квантования. Опять посмотрим на рисунок:

На рисунке изображено равномерное квантование. Одним из основных параметров является δ — шаг квантования. Соответственно, при равномерном квантовании шаг квантования одинаков. Итак, согласно определению запихиваем отсчеты в подготовленную сетку. Первый (слева направо) отсчет находится ближе к уровню 3 (уровни квантования — по вертикальной оси). Второй — к 5-му уровню и т. п. Таким образом, вместо последовательности отсчетов получаем последовательность чисел, соответствующих уровням квантования.

При равномерном квантовании динамический диапазон получается довольно большим, а это не есть гуд. Поэтому придумали так называемое неравномерное квантование, при котором динамический диапазон уменьшается. Ну понятно, наверное, что шаг квантования δ будет различным при различных уровнях. При малых уровнях сигнала шаг небольшой, при больших он увеличивается. На практике же неравномерное квантование практически не используется. Вместо этого применяют компрессоры, причем америкосы используют μ-компрессоры, европейцы — А-компрессоры (грэческая буковка μ читается «мю»). Характеристика компрессора показана на рисунке 3.

Для восстановления сжатого динамического диапазона используют декомпрессор или экспандер. Понятно, что амплитудная характеристика экспандера обратна компрессору.

Кодирование — это сопоставление элементов сигнала с некоторой кодовой комбинацией символов. Широко используется двоичный код.

Ну а теперь перейдем собственно к АЦП. АЦП бывают последовательные и параллельные. Начнем с параллельных.

Параллельные АЦП

Чаще всего в качестве пороговых устройств параллельного АЦП используются интегральные компараторы. Схема типичного АЦП параллельного типа приведена на рисунке 4.

Довольно простая схема. Число компараторов DA выбирается с учетом разрядности кода. Например, для двух разрядов понадобится три компаратора, для трех — семь, для 4-х — 15. Опорные напряжения задаются с помощью резистивного делителя. Входное напряжение Uвх подается вход компараторов и сравнивается с набором опорных напряжений, снимаемых с делителя. На выходе компаратора, где входное напряжение больше соответствующего опорного, будет лог. 1, на остальных — лог. 0. Естественно, пир входном напряжении равном 0 на выходах компараторов будут нули. При максимальном входном напряжении на выходах компараторов будут лог. 1. Шифратор предназначен для преобразования полученной группы нулей и единиц в «нормальный» двоичный код.

Параллельный АЦП является самым быстродействующим из всех, поскольку компараторы работают одновременно. Но есть весьма существенный недостаток. Как было сказано выше, разрядность такого АЦП определяется числом компараторов (ну и резиков, конечно). При малой разрядности это еще не так хреново. А когда разрядов 10-12. Для 10-ти разрядного АЦП понадобится 2 10 — 1 = 1023 штук. Вот это уже не хорошо. Отсюда вытекает высокая стоимость параллельных АЦП. Кстати, подбором сопротивлений резиков можно выбрать закон преобразования — линейный, логарифмический.

Последовательные АЦП

Последовательные АЦП бывают последовательного счета и последовательного приближения. Типичная схема АЦП последовательного счета приведена на рисунке 5.

На схеме буквами и символами обозначены следующие элементы: К — компаратор, & — схема «И», ГТИ — генератор тактовых импульсов, СТ — счетчик, #/A — ЦАП. На один вход компаратора подается входное напряжение, на второй — напряжение с выхода ЦАП. В начале работы счетчик устанавливается в нулевое состояние, напряжение на выходе ЦАП при этом равно нулю, а на выходе компаратора устанавливается лог. 1. При подаче импульса разрешения «Строб» счетчик начинает считать импульсы от генератора тактовых импульсов, проходящих через открытый элемент «И». Напряжение на выходе ЦАП при этом линейно нарастает, пока не станет равным входному. При этом компаратор переключается в состояние лог. 0 и счет импульсов прекращается. Число, установившееся на выходе счетчика и есть пропорциональный входному напряжению цифровой код. Выходной код остается неизменным пока длится импульс «Строб», после снятия которого счетчик устанавливается в нулевое состояние и процесс преобразования повторяется.

Такие АЦП имеют низкое быстродействие. Достоинством является сравнительная простота построения.

Более быстродействующим являются АЦП последовательного приближения, называемый также АЦП с поразрядным уравновешиванием. АЦП последовательного приближения показан на рисунке 6. В основе работы таких преобразователей лежит принцип дихотомии — последовательного сравнения измеряемой величины с ½, ¼, ⅛ и т. п. от возможного ее максимального значения.

В таком АЦП используется спешиал регистр — регистр последовательных приближений. При подаче импульса «Пуск» на выходе старшего разряда регистра появляется лог. 1, а на выходе ЦАП напряжение U1. Если это напряжение меньше входного, то в следующем по счету разряде регистра записывается еще лог. 1. Если же входное напряжение меньше, то лог. 1 в старшем разряде отменяется. Таким образом, методом проб перебираются все разряды — от старшего до младшего. На всю операцию преобразования требуется импульсов ГТИ всего в два раза больше количества разрядов. То есть АЦП последовательных приближений намного шустрее АЦП последовательного счета.

Последовательно-параллельные АЦП

Последовательно-параллельные АЦП — это компромисс между параллельными и последовательными АЦП, т. е. желание получить максимально возможное быстродействие при минимальных затратах и сложности.

На рисунке 7 показан для примера двухступенчатый АЦП. В многоступенчатых преобразователях процесс преобразования разделен в пространстве.

Для примера на рисунке изображен двухступенчатый АЦП. АЦП1 (верхний) осуществляет «грубое» преобразование входного сигнала в старшие разряды. Сигналы с выхода первого АЦП поступают на выходной регистр и одновременно на вход быстродействующего ЦАП. Кружочек с плюсиком — это сумматор, но в данном случае вычитатель. Цифровой код преобразуется ЦАП в напряжение, которое вычитается из входного в этом самом кружочке с плюсиком. Разность напряжений преобразуется с помощью АЦП2 в коды младших разрядов. Регистр для упрощения можно выкинуть. В таких схемах ЦАП чаще всего выполняется по схеме суммирования токов с помощью дифференциальных переключателей, но могут быть построены по схеме суммирования напряжений.

Требования к точности АЦП1 выше, нежели ко второму. Оба АЦП параллельного типа. Допустим, и тот, и другой 4-х разрядные, в каждом используется по 16 компараторов. В итоге получается 8-ми разрядный АЦП всего на 32 компараторах, тогда как при построении по параллельной схеме понадобилось бы 2 8 — 1 = 255 шт. Быстродействие примерно раза в два хуже. Помимо этого бывают многотактные последовательно-параллельные и конвейерные АЦП. У них несколько иная структура. К примеру, многотактные преобразователи работают с различным шагом квантования, т. е. в преобразователе процесс преобразования разделен во времени. В один момент времени формируются старшие разряды, в другой момент времени шаг квантования уменьшается и формируются младшие разряды.

Ссылка на основную публикацию
Adblock
detector