Содержание

Анализ качества электрической энергии

Анализ качества электроэнергии и приборы для измерения

Контроль качества электроэнергии

Мероприятия по контролю качества электроэнергии включают постановку задач по контролю КЭ и производство ранжирования показателей качества электроэнергии по группам согласно критичности контроля, функционального значения, отношения к потребителю или к сетевой компании.

Организация служб сетевой компании для эффективного управления КЭ, определение задач специалистов за контролем и управлению качеством электроэнергии.

Формирование требований к анализаторам качества электроэнергии в системах электроснабжения и к параметрам, не включенным в ГОСТ, но несущие определенную пользу при контроле КЭ.

Существует четыре формы измерений качества электрической энергии это:

  1. Диагностика.
  2. Инспекционный контроль.
  3. Операционный контроль.
  4. Коммерческий учет.

Методы идентификации источников искажения напряжения

В настоящее время постоянно растет число электроприемников искажающих параметры КЭ.

Ненсинусоидальность сетевого напряжения, подразумевает наличие вместе с гармоникой основной частоты, гармоник высших кратных частот.

Появление потенциального несоответствия по несинусоидальности, можно спрогнозировать, путем выполнения замеров коэффициентов и оценить их близость к допустимым нормам.

Для измерения качества электроэнергии используются приборы которые можно разделить на три категории:

  1. Приборы, которые предназначены только для регистрации существующего напряжения.
  2. Приборы, для регистрации значений напряжения и тока, определяющие фазовые углы между ними по гармоническим составляющим, но не производящие вычисление мощностей.
  3. Приборы для регистрации показаний напряжения в сети и токовых показателей, производящие определение величинфазовых углов, мощности активной нагрузки по гармоникам и несимметричным составляющим.

Анализаторы качества электрической энергии

Предназначение таких приборов заключается в выполнении задач по контролю за работой промышленного оборудования и электросетей производственного и бытового назначения.

При выполнении задач по расследованию проблем с качеством напряжения в электрических сетях используется приборы Fluke и АКИП АКЭ различных модификаций. Приборы производят фиксацию и выявляют значение сетевого напряжения на контактах сетевых подключений, измеряют частоту и гармоники для определения влияния нагрузок с высоким коэффициентом искажения на работу остального оборудования.

Отображают основные параметры качества электроэнергии, дают всю информацию в виде графиков, показывают все значения параметров с отметками реального времени. Осуществляют полный анализ значений отдельных гармоник и отображают полный коэффициент искажений.

Производят измерение величины фликера, то есть оценивают значение оказания влияния импульсов на функциональность осветительных систем. Fluke производят определение различных событий, нарушающих работу оборудования с определением информации о дате события, времени и его продолжительности.

Рис №1. Прибор для анализа качества электрической энергии Fluke 434

Современные модели анализаторов оборудованы функцией – калькулятора потерь электрической энергии. Устройства служат для оценки эффективности преобразователя мощности. При проведении запуска генераторов и введения в действие ИБП дают возможность наблюдать полупериод и вид сигналов, дающих представление по динамике электросети. Приборы анализаторы осуществляют функции по:

  1. Определение классического электроснабжения.
  2. Детальный анализ потерь.
  3. Анализ дисбаланса.
  4. Производят расчеты для количественной оценки в денежном отношении энергетических потерь в связи с нарушениями качества электроэнергии.

Регистратор качества электроэнергии

Регистраторы КЭ обеспечивают измерения и регистрацию параметров качества электрической энергии согласно требованиям ГОСТа используются для контроля за качеством электроэнергии, производят регистрацию графиков нагрузки, для выявления причин сбоев в работе оборудования и его некорректного поведения, для экспертиз по решению спорных вопросов между потребителем и поставщиком энергии.

При осуществлении измерений по контролю за КЭ существует линейка приборов под маркировкой Fluke, ПАРМА, ArbiterSystems, АКИП АКЭ.

Рис№2. Fluke 1735 –прибор применяемый для трехфазной сети в качестве регистратора электрической энергии

Рис №3. Комплексное приборное устройство ПКК-57

Приборное устройство ПКК-57 осуществляет замеры в режиме регистратора, производит запись текущих величин контролируемых параметров. Может работать в качестве анализатора, для обнаружения сбоев напряжения и искажений гармоник. Производит измерения температур, влажности, уровня освещения.Производит замеры по электробезопасности как-то: замер сопротивления изоляции, контролирует работу УЗО, определяет проводимость грунта, последовательности чередование фаз.

Существуют приборы для измерения качества энергии, осуществляющие операции по замеру токовых величин, работающих в качестве токоизмерительных клещей.

Рис №4. Токоизмерительные клещи Fluke 345

Прибор выполняет работу по спектральному анализу гармоник, помехоустойчивость достигается благодаря наличию в конструкции фильтра низких частот. Токоизмерительные клещи производят замеры постоянного и переменного тока. Обладают встроенной памятью, которая регистрирует показания за довольно длительный временной промежуток.

Рис №5. Прибор для выполнения замеров и мониторинга качества электрической энергии — LPW-305

Прибор контроля качества электроэнергии LPW-305 устанавливается стационарно и используется для постоянного мониторинга КЭ с осуществлением контроля замеренных значений по ГОСТу. Прибор имеет возможность работы в учетных контрольно-измерительных системах АИИС КУЭ.

В возможности этого устройства кроме выполнения функций мониторинга качества входит фиксированное измерение параметров качества в режиме реального времени, для проведения энергоаудита.

Измерение качества электрической энергии

  1. Измерение качества электрической энергии
  2. Государственные стандарты
  3. Принцип работы анализатора качества электроэнергии
  4. Кто проводит исследования?
  5. Цели проверки
  6. Классификация проверок
  7. Многофункциональные измерительные приборы
  8. Показатели частоты
  9. Медленные отклонения в напряжении
  10. Колебания в напряжении сети
  11. Быстрые одиночные отклонения напряжения
  12. Несинусоидальность
  13. Коэффициент несимметрии

Измерение качества электрической энергии

Измерение качества электрической энергии осуществляется с помощью специальных устройств и приборов. Во время исследования фиксируется значения трансформаторов, вторичных токов и напряжения сети. Существуют различные виды анализаторов электроэнергии. В процессе проверки выявляются параметры энергосистемы, которые анализируются на соответствие ГОСТам и нормативной документацией.

Государственные стандарты

ГОСТ определяет ряд показателей качества электрической энергии:

  • отклонения частоты;
  • провалы напряжения и колебания;
  • напряжение импульсивное;
  • несимметричность внутри трехфазных систем;
  • несинусоидальность кривой.

Отклонения от установленных значений указывает на проблемы в работе оборудования. В таких ситуациях наблюдается снижение мощности и надежности оборудования, повышение расхода энергии и нерациональности использования ресурсов.

Принцип работы анализатора качества электроэнергии

Прибор выполняет функцию проверки величин и уровень соответствия требованиям. Принцип его работы основан на измерителе электрических величин. Аппарат фиксирует значения тока и напряжения за короткие интервалы времени.

Современные технологии позволяют получить исчерпывающую информацию о работе системы:

  • постоянное отклонение напряжения;
  • пиковые нагрузки и токи;
  • природа переходных процессов в сети;
  • фиксация времени с наибольшими потреблениями электрической энергии;
  • искажения кривых тока;
  • падения и провалы.

Анализаторы выпускаются в мобильной и стационарной форме. Они могут использоваться систематически или эпизодически, в зависимости от поставленной цели. Комплексная проверка корректности работы оборудования – это залог длительной и эффективной работы техники на предприятии. Своевременное выявление неполадок позволяет устранить неисправность до возникновения серьезных проблем.

Контроль за работой техники осуществляется с целью выявления дефектов в электрической сети и их устранения. Для выполнения задания требуется подсоединить анализатор к системе. Места контроля – это точки подключения к потребительской сети. При работе с простыми системами допускается подсоединение в местах, расположенных максимально близко к этим точкам.

Читать еще:  Ntl 001d схема подключения

Полученная информация обрабатывается с помощью математических алгоритмов. Это позволяет достигнуть ряда целей:

  • рассчитать параметры работы;
  • проанализировать качество электроэнергии;
  • установить количество энергии.

Показатели измеряются на определенном отрезке времени. Низкое напряжение – это самая частая причина плохого качества энергии. Это значение анализируется дважды в год. Другие нормы определяются один раз в 12 месяцев.

Кто проводит исследования?

Право проводить измерения имеют лаборатории с аттестатами Ростехнадзор. В службах квалифицированные работники, использующие сертифицированное оборудование. Точность результатов гарантируется высоким качеством используемой измерительной техники.

Оборудование проходит многочисленные проверки, перед началом эксплуатации. Класс точности, определяется соответствующими специалистами и технологами.

Цели проверки

Полученные результаты позволяют добиться соблюдения заданных в договоре поставщика параметров. Анализ обеспечивает получение данных для составления развернутого отчета о работе системы. Экспертиза выявляет перечень отклонений или их отсутствие. Полученный документ дает основания, для предъявления поставщику обоснованных претензий о несоответствии качества энергии общепринятым нормам. В результате вторая сторона договора устранит все проблемы, и выявленные нарушения в оговоренный промежуток времени.

Измерения обеспечивают расчет коэффициента рациональности использования электричества. Благодаря этому производство выходит на технологичный уровень работы с минимальным расходом ресурсов. При необходимости, из электрической сети устраняются объекты, работающие неэффективно или во вред всей системе.

Проводить исследования стоит для реальных и запланированных систем энергоснабжения. Экспертизу приурочивают к энергетическому аудиту промышленного объекта. Итоги проверки, дают данные для повышения уровня энергетической эффективности в промышленной сфере.

Полученные значения сохраняются и используются при проведении следующего аудита. Специалисты сравнивают данные и делают соответствующие выводы о работе системы.

Классификация проверок

В зависимости от цели контроль качества распределяется на 4 вида:

  • оперативный;
  • инспекционный;
  • диагностический;
  • коммерческий учет.

Виды анализа имеют свои особенности, характеристики и целевое назначение. Необходимость проведения той или иной инспекции определяется узкими специалистами на основе общепринятых стандартов работы электрических сетей.

Диагностический вид контроля, предназначен для решения спорных вопросов между поставщиком и потребителем. Он проводится в местах распределения электричества между двумя сторонами договора. На основе полученных данных, создается официальный отчет, позволяющий доказать невыполнение правил соглашения. После рассмотрения отчета, виновная сторона будет обязана устранить нарушения и повысить качество электроэнергии.

Инспекционный контроль проводится сертифицированными службами с целью выявления отклонений от официальных требований и нормативов. Аудит является обязательным для всех сторон договора и проводится с определенной периодичностью.

При возникновении дефектов проводится оперативный контроль. Он выявляет реальные и потенциальные угрозы понижения качества электричества в сети. В результате проверки проводятся мероприятия по устранению нарушений работы и профилактические процедуры.

Коммерческий учет, предназначен для рассмотрения ставок и тарифов поставщика. Анализ осуществляется в местах раздела электросети между двумя сторонами договора. Исследование назначается при необходимости определения уровня надбавок и скидок за предоставленное качество ресурса.

Многофункциональные измерительные приборы

Современные многофункциональные приборы обеспечивают получение результатов не только в цифровом формате, но и в денежном эквиваленте. Модели отличаются рядом показателей:

Модели нового поколения ускоряют процесс получения значений по прогнозированию, фиксации, устранению и предотвращению возникновения новых проблем в работе системы. С помощью специальных аппаратов, специалисты определяют механические и электрические параметры.

Отсутствие контроля приводит к частым неполадкам, сбоям энергосистемы и чрезмерным расходам электричества. Общего показателя эффективности работы сети недостаточно для проведения глубинного анализа. Большие предприятия обращаются в сертифицированные службы для осуществления контроля над всеми компонентами рабочей зоны.

Важно анализировать нагрузки в динамике. Это позволит выявить уровень износа электросети и своевременно провести мероприятия по устранению потенциальных угроз. При выявлении вины поставщика, потребитель будет лишен необходимости брать на себя обязанность по решению проблем.

Показатели частоты

Отклонения в диапазоне от 50 Гц и выше допускаются при серьезных авариях. По нормативам, показатель не должен превышать 0,4 Гц во время работы сети. При использовании автономных генераторов требования смягчаются (±1 Гц и ±5 Гц).

Эти сети не способны поддерживать высокую стабильность. В процентном соотношении предельно допустимое значение составляет 10%. Нормальный показатель не превышает 5%.

Медленные отклонения в напряжении

Интервал изменений превышает 1 минуту. При анализе определяется промежуток времени, на протяжении которого напряжение отклонялось на 10% от номинального показателя (220 и 380 для бытовых сетей). Дискретность при этом составляет 10 минут. Замеры проводятся на протяжении недели.

Колебания в напряжении сети

Основу оценки этого значения составляет понятие фликера. Он характеризует то, как человек воспринимает мерцания света от источника. Выделяют длительную и кратковременную фазу – 2 часа и 10 минут соответственно. Обе величины не должны превышать 1,38 и 1,0 в разрезе недельных измерений. Для расчета показателей применяются сложные формулы.

Быстрые одиночные отклонения напряжения

Одиночные колебания – это случайные изменения. Возникновения отклонений свидетельствуют о переключении электроустановок или незначительных нарушениях в работе сети (сбои или далекие короткие замыкания в системе). Эти колебания относят к провалам перенапряжения и напряжения. В таблице определены общепринятые нормативные показатели.

Несинусоидальность

Наличие импульсивного тока в сети, приводит к ряду изменений в системе параметров. Наблюдается изменение кривой напряжения, которая раскладывается на основную и частотную. Возникновение гармоник может нарушить работы полупроводниковых приборов. Для устранения такой угрозы следует контролировать уровень этого параметра.

Коэффициент несимметрии

Это один из основных параметров при оценке качества работы в трехфазных и двухфазных сетях. Превышение коэффициента, наблюдается при неравномерном распределении нагрузки по фазам. Параметр регламентирован ГОСТом и используется при проведении любых проверок сети.

Не все процессы происходят систематически. Существует ряд характеристик, которые фиксируются в случайных ситуациях. Для их возникновения требуются определенные условия и совпадения по сопутствующим изменениям.

Прерывание напряжения случается во время аварий или плановых ремонтных работ. Провалы возникают при подключении оборудования высокой мощности, или коротких замыканиях. Перенапряжения фиксируются по ряду причин:

  • короткие замыкания;
  • резкое снижение нагрузки;
  • обрывы нейтральных проводников;
  • замыкания на землю.

При воздействии молний происходят импульсивные перенапряжения.

Минимальный интервал измерений составляет неделю. За 7 дней прибор собирает достаточное количество информации для подготовки точных результатов. Математический алгоритм исключает риск ошибки и позволяет автоматизировать процесс измерений. В результате пользователь получает усредненные значения и определяет основные проблемы в работе сети.

Московская Энергоконсалтинговая Компания

Анализ качества электрической энергии

«Московская энергоконсалтинговая компания» предлагает свои услуги организациям и частным лицам по проведению контроля и анализа качества электроэнергии.

Анализ качества электроэнергии — это современный, наиболее объективный, быстрый, удобный, малозатратный способ получить полную информацию о состоянии Вашей электро-энергосистемы и выявить любые проблемы, связанные с эксплуатацией электрооборудования!

Качество электроэнергии- почему это важно!

Анализ качества электроэнергии – мероприятие, значимость которого трудно переоценить в наше время. Именно благодаря эффективному анализу качества электрической энергии в дальнейшем становится возможным обеспечение энергосбережения на объекте, снижение затрат на электрическую энергию, решение проблем связанных с стабильностью и безаварийностью работы оборудования.

Электро-энергосистема страны в целом, была образованна достаточно давно, до недавнего времени переживала трудные времена, модернизация оборудования не производилась в достаточной мере. В связи с этим, в настоящее время, качество электроэнергии, которую поставляют сетевые организации, а далее поставщики потребителям, оставляет желать лучшего. Как следствие, потребители несут экономические потери в связи с некорректной работой электрооборудования, вызванной такими основными причинами как:

  • перебои поставок электроэнергии
  • отклонение, скачки и провалы напряжения
Читать еще:  Led лампа для маникюра sun

  • нестабильность частоты перемененного тока

  • гармонические искажения, вызванные внешними факторами

  • электромагнитная несовместимость
  • избыточная составляющая реактивной энергии со стороны поставщика

Не менее значимыми являются вопросы, связанные с правильной эксплуатацией электрооборудования и собственных сетей, самим потребителем. Энергосистема должна быть грамотно сбалансирована на этапе разработки, профессионально реализована, и эксплуатироваться в соответствии с установленными нормами и правилами.

В процессе обследования выявляются такие первостепенные вопросы как:

  • равномерность распределения нагрузок в трех-фазных сетях «перекос фаз»

  • электромагнитная совместимость устройств потребителя
  • наличие гармонических искажений, вызванных работой электропотребляющих устройств
  • коэффициент мощности (cos f), сведения о соотношении активной, реактивной и полной энергий в энергосистеме,

Качество электроэнергии — ГОСТ

На территории Российской Федерации требования к качеству электроэнергии устанавливаются ГОСТ Р 54149-2010 «Нормы качества электрической энергии в системах электроснабжения общего назначения» (Скачать)

Кто проводит контроль качества электроэнергии?

Производить анализ качества электроэнергии могут только организации, имеющие право ведения данного вида деятельности, имеющие профессиональных сотрудников, располагающие специальным высокоточным измерительным оборудованием. Только при наличии этих условий, Вы получаете гарантию того, что работы будут выполненны качественно и данные о показателях качества электроэнергии будут достоверны.

Оборудование для проведения контроля качества электроэнергии

Наша компания использует уже хорошо себя зарекомендовавшие анализаторы качества электроэнергии Metrel

Анализатор качества электроэнергии Metrel MI 2792A PowerQ4 Plus

Порядок проведения работ по анализу качества электроэнергии

Работы по проведению качества электроэнергии производятся в следующем порядке:

  1. Опрос Заказчика, анализ технической документации.
  2. Заключение Договора на обследование
  3. Выезд на объект обследования и установка оборудования
  4. Обработка результатов измерения, формирование отчетной документации, разработка рекомендаций по устранению выявленных проблем.

Результаты работ по проведению анализа качества электроэнергии

Результаты работ по замеру качества электроэнергии оформляются в виде технического отчета, по форме ГОСТ Р 54149-2010 «Нормы качества электрической энергии в системах электроснабжения общего назначения». (Скачать пример отчета АКЭ). В случае обнаружения проблем, дополнительно предоставляются рекоммендации по их устранению.

Для заказа замеров качества электроэнергии Вы можете связаться с нами по телефону +7 (499) 391-70-14 или заполнив контактную форму ниже:

Анализ качества электрической энергии

Электрическая энергия как товар используется во всех сферах жизнедеятельности человека, обладает совокупностью специфических свойств и непосредственно участвует при создании других видов продукции, влияя на их качество. Понятие качество электроэнергии (КЭ) отличается от понятия качества других видов продукции. Каждый электроприемник (ЭП) предназначен для работы при определенных параметрах электрической энергии: номинальных частоте, напряжении, токе и т.п., поэтому для нормальной его работы должно быть обеспечено требуемое КЭ. Таким образом, качество электрической энергии определяется совокупностью ее характеристик, при которых ЭП могут нормально работать и выполнять заложенные в них функции.

К основным задачам измерения и анализа показателей качества электроэнергии (ПКЭ) относятся: обнаружение помех и их оценка; регистрация измеренных числовых характеристик в целях обработки и отображения результатов; оценка измеренных значений показателей качества электроэнергии на соответствие установленным требованиям; определение источника помех; проведение коммерческих расчетов между поставщиком и потребителем электроэнергии. Для организации измерений необходимо определить вид контроля, точку осуществления измерений и виды контролируемых ПКЭ. В зависимости от длительности наблюдения можно выделить два вида организации контроля КЭ: периодический и постоянный [4]. Отличие постоянного контроля от периодического заключается в непрерывности времени измерений и обработки результатов.

Возможны два варианта реализации поставленной задачи по измерению и анализу ПКЭ: система мониторинга, основанная на методах виртуального моделирования физических процессов; система мониторинга, основанная на применении контрольно-измерительных приборов [3]. На сегодняшний день методы виртуального моделирования широко применяются во всех областях науки и производства, так как они позволяют оперативно и с наименьшими затратами определить определенные параметры конечного результата. Особенно широко виртуальное моделирование применяется в проектной деятельности. Основным преимуществом второго варианта системы мониторинга ПКЭ является высокая точность, так как метод основан на измерениях физических величин [1, 5–8]. Также исследования, направленные на использование этого метода, позволяют определить принципиально новые требования к приборам учета и мероприятиям, обеспечивающим оптимизацию ПКЭ.

В настоящее время утверждены новые стандарты ГОСТ Р 51317.4.7-2008 и ГОСТ Р 51317.4.30-2008, регламентирующие методы измерения ПКЭ. Эти стандарты базируются на международных стандартах МЭК 61000, разработанных для пересмотра европейского стандарта на КЭ EN 50160. Также с 1 июля 2014 года вводится в действие новый ГОСТ Р 54149-2010, устанавливающий требования к допустимому уровню помех в электрических сетях общего назначения.

Современные анализаторы ПКЭ должны обеспечивать измерение следующих характеристик в соответствии с требованиями действующего в настоящее время ГОСТ 13109-97 [2]: действующее напряжение и напряжение основной частоты; установившееся отклонение напряжения; частоту; коэффициенты несимметрии напряжений по обратной и нулевой последовательностям, искажения синусоидальности кривой напряжения, n-ой гармонической составляющей напряжения, временного перенапряжения; отклонение частоты; длительности провала напряжения, временного перенапряжения; глубину провала напряжения; размах изменения напряжения; кратковременную и длительную дозу фликера; угол фазового сдвига между фазными напряжениями основной частоты; активную и реактивную мощности.

Измерения ПКЭ и их дальнейший анализ при работе асинхронного двигателя проводились с использованием средств измерений и программного обеспечения типа «Ресурс». Измерители «Ресурс-UF2M» имеют один четырехканальный универсальный вход измерения напряжения и два четырехканальных входа тока (с номинальными значениями тока 1 и 5 А).

На рис. 1 показан измерительный стенд: трёхфазный источник питания, асинхронный двигатель, прибор «Ресурс-UF2М» с токоизмерительными клещами.

Рис. 1. Измерительный стенд с прибором «Ресурс-UF2М»

Входы напряжения и каждый вход тока гальванически изолированы между собой, что позволяет подключать прибор последовательно с другими устройствами (счетчиками электроэнергии, регистраторами и т.п.). Для измерения в схемах с двумя трансформаторами тока применяется специальный режим, когда отсутствующий ток рассчитывается на основании измеряемых. Измерители могут быть использованы в качестве образцовых счетчиков электроэнергии при проверке (или поверке) счетчиков электроэнергии классов точности 0,5 и менее точных на месте эксплуатации. Устройства считывания подключаются к интерфейсу RS-232 измерителя.

В качестве схемы измерения была выбрана трехфазная четырехпроводная система, так как она соответствует схеме подключения анализатора «Ресурс-UF2М» (рис. 2).

Рис. 2. Трехфазная четырехпроводная схема измерения напряжения (220/380 В) с использованием токоизмерительных клещей

Все полученные данные измерялись с интервалом 1 секунда и имеют очень большой объем в табличном эквиваленте. Для получения усредненных суточных графиков с минутным интервалом измерения воспользуемся методикой обработки и анализа результатов программного обеспечения «Ресурс-UF2Plus». Оно предназначено для чтения всех архивируемых значений параметров с измерителей ПКЭ типа «Ресурс», их отображения, сохранения и экспорта в Microsoft Excel. Также обеспечивает работу с файлами, записанными измерителями «Ресурс-UF2М» непосредственно на подключенный внешний USB-накопитель данных типа flash-диска.

В качестве электродвигателя использовался трёхфазный асинхронный двигатель с короткозамкнутым ротором марки АИР56А4УЗ, параметры которого приведены в таблице.

Технические данные асинхронного двигателя АИР56А4УЗ

Анализ качества электрической энергии

Простейший электроанализатор позволяет непосредственно измерять напряжение или ток в сети. В отдельных случаях подключение к электросети по току осуществляется через измерительные трансформаторы или измерительные клещи. Подключение по напряжению осуществляется, как правило, напрямую или через специальные трансформаторы напряжения.

Читать еще:  5 Ступенчатый фильтр для очистки воды

Проведение аудита требует использования относительно недорогих средств измерения. По большей части это портативные приборы. Ими могут быть, например, немецкие анализаторы качества электроэнергии. Главная цель аудита – выявление устойчивых сетевых аномалий. В основном они протекают в течение короткого времени от нескольких минут до нескольких часов [3].

Анализаторы качества электроэнергии фиксируют большое число показателей, в первую очередь — показатели качества электроэнергии, нормируемые действующими стандартами. В Российской Федерации это стандарт ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения».

  • Установившееся отклонение напряжения от нормального значения;
  • Размах изменения напряжения и доза фликера;
  • Коэффициент искажения синусоидальности кривой напряжения;
  • Коэффициент n-ой гармонической составляющей напряжения;
  • Коэффициент несимметрии напряжений по обратной последовательности;
  • Коэффициент несимметрии напряжений по нулевой последовательности;
  • Отклонение частоты от нормального значения;
  • Длительность провала напряжения;
  • Импульсное напряжение;
  • Коэффициент временного перенапряжения.

Основные требования, предъявляемые к средствам измерения:

  • Контроль междуфазного напряжения;
  • Контроль фазных токов;
  • Обязательное наличие регистрирующих средств;
  • Приборы должны соответствовать ГОСТ.

Проблемы, причиной которых является плохое качество электропитания, являются чрезвычайно важными и способны сильно осложнить жизнь потребителей электроэнергии, причиняя им значительные материальные убытки. К наиболее важным факторам, связанным с качеством электроэнергии, относятся:

  • появление в электросети высших гармоник;
  • провалы и прерывания напряжения;
  • кратковременные события большой амплитуды — перенапряжения;
  • асимметрия [2].

Причиной искажения тока и напряжения в сети являются нелинейные потребители, использующие несинусоидальный ток. Наиболее часто встречаемыми нелинейными потребителями являются:

  • приводные устройства — инверторы, системы мягкого запуска двигателей, управляемые и неуправляемые выпрямители, блоки питания постоянного тока;
  • электротермические устройства — индукционные печи повышенной частоты, дуговые печи, индукционные нагреватели, сварочные аппараты, электросварочные станы (для листового железа, пленки и т.п.), микроволновые установки, лазеры;
  • осветительное оборудование — газоразрядные лампы, лампы с изменяемой частотой (компактные люминесцентные лампы), дуговые лампы;
  • устройства общего использования — радиоприемники, аудио-видео устройства, компьютеры, принтеры, микроволновые печи;
  • офисное оборудование — рабочие станции, серверы, мониторы, ксероксы, кондиционеры [1].

Высшие гармоники в сети. Все устройства, упомянутые ранее, потребляя ток нелинейным способом, приводят к возникновению гармоник, и таких устройств становится с каждым днем больше. Практика свидетельствует, что гармоники с кратностью выше 20 появляются очень редко и обычно незначительны, поэтому в качестве стандарта для анализирующих устройств принимается 25 в качестве максимальной кратности гармоник, хотя имеются анализаторы, способные регистрировать гармоники, кратные 50 и выше.

Высшие гармоники могут вызывать неблагоприятные явления в электросети:

  • перегрев проводов или нейтральных шин;
  • потери в трансформаторах вплоть до их повреждения;
  • в системах компенсации мощности могут возникнуть повреждения конденсаторов, что при резонансе приводит к взрыву таких элементов;
  • потери в двигателях, связанные не только с потерями энергии, но и с более быстрым механическим износом;
  • проблемы коммутации, особенно для устройств защитного отключения (УЗО);
  • неправильная работа электронных устройств вплоть до их повреждения;
  • проблемы с пересылкой и преобразованием данных [2].

Провалами напряжения являются кратковременные понижения величины напряжения. Пороговым значением для провала напряжения принимают 10% от номинального напряжения сети. Продолжительность такого явления условно определяется в пределах от 10 мс до 1 мин. Причиной возникновения таких падений напряжения главным образом является подключение потребителей большой мощности в пределах электросети, как со стороны потребителя, так и со стороны поставщика электроэнергии. Это явление случается тем чаще, чем больший импеданс линии (например, в сельской местности, где имеются воздушные линии низкого напряжения с малым поперечным сечением, при одновременном увеличении потребляемой мощности). Реже причиной падений напряжения являются короткие замыкания, возникающие как в распределительных, так и в потребительских электросетях [5].

Асимметрия является понятием, связанным с трехфазными сетями и может относиться:

  • к асимметрии напряжений питания;
  • к асимметрии токов нагрузки.

Асимметрия напряжений (токов) возникает в трехфазных сетях, когда значения трех составляющих напряжений (токов) отличаются между собой и/или углы между отдельными фазами отличаются от 120°. Наиболее частым источником асимметрии является неравномерная нагрузка на отдельные фазы. Хорошим примером является подключение к трехфазной сети больших однофазных нагрузок, таких как железнодорожные тяговые двигатели, дуговые печи. В нормальных условиях, например, в упомянутых сетях низкого напряжения в сельской местности асимметрия может усиливать падения напряжения.

Эти явления особенно опасны для трехфазных двигателей, в которых даже незначительная асимметрия напряжений может вызвать во много раз большую асимметрию токов. В таких условиях вращающий момент двигателя уменьшается, и увеличиваются тепловые потери в обмотках и механический износ. Асимметрия также неблагоприятно отражается на питающих трансформаторах [4].

Стандартный набор параметров, измеряемых электроанализаторами, выглядит следующим образом:

  • значение (величина) фазных и линейных напряжений;
  • величина фазных токов и тока в нейтрали;
  • величина мощности в нагрузке (активная, реактивная составляющие и суммарная мощность);
  • значение потребленной или отпущенной электроэнергии (как активной, так и реактивной);
  • рабочая частота переменного тока;
  • гармонические составляющие переменного тока и напряжения (как спектральный состав сигнала, так и суммарный коэффициент гармоник);
  • значение коэффициента фликера, характеризующего негармонические искажения питающего напряжения и другие.

Конструктивно анализаторы качества электроэнергии выполняются в виде переносных и стационарных устройств, причём выбор того или иного исполнения анализатора зависит от набора решаемых задач. Типовой набор задач, решаемых с помощью электроанализаторов переносного типа таков:

  • проведение специальных энергетических исследований (энергоаудит);
  • подготовка данных по энергетическому балансу;
  • фазовая и фидерная балансировка электросети;
  • снятие и подготовка графиков нагрузок;
  • экспериментальный подбор величин компенсаторов реактивной мощности;
  • анализ характеристик и качества электроэнергии, а также выявление причин их нарушения

Стационарные электроанализаторы способны решать следующие задачи:

  • анализ динамического распределения используемой электроэнергии (технический учет);
  • определение показателя эффективности использования электроэнергии (энергоменеджмент);
  • автоматическое определение параметров регулирования по ограничению потребления в пики нагрузки;
  • регистрация основных показателей качества электроэнергии [2].

Кроме того, стационарные анализаторы качества электроэнергии могут быть оснащены дополнительными входами и выходами, с помощью которых (на их базе) можно получать комплексные системы анализа и управления энергопотреблением. Только при соблюдении всех технических рекомендаций и правил безопасности возможно правильное и точное измерение характеристик ПКЭ, способных предупредить появление нарушений в электрической сети.

Методика измерений, проводимых с помощью анализаторов качества электроэнергии, основывается на нахождения истинного среднеквадратичного значения измеряемой величины (TRMS). Давно установлено, что этот метод является наиболее точным инструментарием для измерения электрических величин при наличии искажений формы (синусоидальности) тока и напряжения. В зависимости от поставленной задачи и вида нагрузки в сети периодичность проведения измерений электрических параметров может варьироваться от одного раза в час до нескольких раз в секунду. Современный электроанализатор обязательно имеет встроенную электронную память или специальный цифровой порт, которые позволяют проводить регистрацию измеряемых параметров и передачу их на персональный компьютер. В целях экономии памяти отдельные приборы содержат встроенную функцию запуска регистрации по внешнему сигналу, срабатывающую, например, при превышении параметром заданного предела. [6].

Сравнительная таблица производителей, цены в таблице приведены на 2018г., преимуществ и недостатков.

Ссылка на основную публикацию
Adblock
detector