Амперметр устройство и принцип действия

Устройство и принцип действия амперметра для измерения тока

Амперметр — прибор, предназначенный для измерения силы тока в электрической цепи. Подключение измерительного устройства в схему проводится последовательно с участком, который необходимо замерить. Чем ниже внутреннее сопротивление прибора, тем меньше погрешность измерения. Амперметр нельзя подключать как вольтметр, то есть непосредственно к источнику питания, так как произойдет короткое замыкание.

Конструктивные особенности

Существует несколько видов приборов, которые конструктивно отличаются друг от друга. Служат они для измерения переменного и постоянного тока. По своему принципу действия амперметры бывают:

  • электромагнитными;
  • магнитоэлектрическими;
  • тепловыми;
  • электродинамическими;
  • детекторными;
  • индукционными;
  • фото- и термоэлектрическими.

Из всех видов наиболее точными считаются электромагнитные и магнитоэлектрические приборы. Основу магнитоэлектрических устройств составляет постоянный магнит. При прохождении тока через обмотку рамки, между ним и магнитом создается крутящий момент.

С рамкой соединена стрелка, которая перемещается по шкале амперметра и показывает значение силы тока. В электродинамическом приборе основными деталями считаются подвижная и неподвижная катушки. Они могут быть соединены между собой как последовательно, так и параллельно.

Проходящие через них токи взаимодействуют между собой, и подвижная катушка, соединенная со стрелкой, отклоняется. Если с помощью амперметра измеряется большая сила тока, то его соединяют через трансформатор.

Принцип работы

Первый прибор в начале XIX века изобрел Швейгер, но он тогда назывался гальванометром. Рисунок простейшего амперметра выглядит так. На оси кронштейна расположен якорь из стали со стрелкой. Эта конструкция расположена параллельно постоянному магниту, который воздействует на якорь и придает ему магнитные свойства.

Вдоль магнита и стрелки проходят силовые линии, что соответствует нулевому положению на шкале. Как только начнет проходить электрический ток по шине, то произойдет образование магнитного потока. Его силовые линии будут расположены перпендикулярно линиям постоянного магнита.

Под таким воздействием якорь будет стараться повернуться на 90°, а магнитный поток воспрепятствует его возвращению в исходное положение. От величины и направления тока, который проходит по шине, зависит взаимодействие магнитных потоков. Соответственно этой величине стрелка отклонится от нуля по шкале.

Применение приборов

Электромагнитные типы устройств обычно применяются в электрическом оборудовании, работающего в сетях переменного тока с частотой 50 Гц. Магнитоэлектрические приборы фиксируют малые значения силы постоянного тока. Все амперметры по отсчетным устройствам бывают:

  • со стрелочным указателем;
  • с записывающим механизмом;
  • электронные;
  • с цифровым показанием.

Для измерения силы тока в электрических сетях высоких частот применяются термоэлектрические устройства, в которых роль датчика играет термопара. Она фиксирует степень нагрева проводника, при протекании по нему тока. Рамка реагирует на температуру, которая пропорциональна силе тока.

Электродинамические приборы используются для замера силы тока в цепях частотой до 200 Гц. Отличаются чувствительностью к перегрузкам и посторонним электромагнитным волнам. Благодаря точности замеров, применяются в качестве контрольных приборов для проверки остальных устройств для измерения силы тока.

Более современными моделями считаются цифровые амперметры, которые по физическим показаниям сочетают преимущества аналоговых приборов. Пользователи могут делать замеры с их помощью в любых условиях, так как они не боятся тряски, вибрации и т. д.

К бесконтактным устройствам относятся клещи для измерения тока. Устроены они из головки трансформатора. С их помощью могут определяться значения в любых участках электрической цепи. Для этого следует клещами охватить замеряемый кабель или провод.

Популярные модели

Как отечественными, так и зарубежными производителями выпускается довольно большое количество приборов, разнообразной классификации. Особенно ценятся цифровые устройства, которые нужны для измерения показаний. К ним относятся:

  1. А-05 (DC-2) — прибор устроен с внешним шунтом 75 мВ для измерения показаний в цепях постоянного напряжения. В зависимости от используемого трансформатора, амперметр используется в сетях с током от 100 до 1 тыс. А. Единицей измерения является ампер, замеры которого получают с погрешностью 1%, если класс точности шунта не менее 0,5. Потребляемая мощность не более 5 Вт.
  2. ВАР-М01−083 AC 20−450 В УХЛ4 — универсальный прибор, применяемый как вольтметр, так и амперметр. Устройство может использоваться в качестве основного и дополнительного оборудования. Питается за счет проверяемой электрической цепи. Прибор обладает функцией сохранения в памяти минимального и максимального значения. Управление осуществляется одной кнопкой, переключением которой можно вызвать все функции.
  3. ТДМ SQ 1102−0060 400А/5А — недорогой стрелочный прибор, применяемый в однофазных сетях. Корпус выполнен из негорючего пластика и имеет полную совместимость со многими маркировками трансформаторов. Средний срок службы составляет около 12 лет.
  4. АМ-1 — стационарный измерительный прибор, устанавливаемый на DIN-рейку. В комплект входит дополнительный трансформатор. Погрешность измерения составляет не более 0,5 А.

Стоит отметить еще модели амперметров АМ-3, IEK Э 47−1500/5 А, ACS 712 30 А RD и др. Чтобы избежать больших погрешностей, следует выбирать устройства с сопротивлением до 0,5 Ом. Корпус устройств должен быть герметичным и состоять из негорючего материала. Клеммы обычно покрывают антикоррозийным слоем, назначение которых считается обеспечение более прочного контакта.

Процесс измерения

На практике амперметр используется гораздо реже, но иногда все-таки существует необходимость сделать замеры тока. Обычно такая процедура применяется для определения мощности электрического прибора, если нет соответствующих обозначений. Очень важно, что при измерении тока величина напряжения, приложенного к электрической цепи, не имеет значения. Замер прибором можно проводить, разорвав цепь в любом месте.

Источником может быть простая батарейка на 1,5 В, аккумулятор на 12 В или однофазная сеть 220 В. Перед началом измерений пользователи подготавливают оборудование, переводя ручки настройки в соответствующее начальное положение. Если примерное значение тока неизвестно, то переключатели устанавливаются на максимальное значение.

Когда все будет подготовлено, в одну из розеток подключается электрический прибор, а в другую провода амперметра. Если это бытовая сеть, то на измерительном устройстве следует выставить переменный ток и максимальное его значение. При измерении стрелочными приборами часто допускаются ошибки, так как сам процесс с ними проводить не очень удобно.

В этом случае гораздо удобнее использовать цифровые измерительные устройства. Очень популярны мультиметры M890G, в которых есть два диапазона для измерений как переменного, так и постоянного тока. Опытные электрики обычно примерно знают параметры электрической сети, поэтому они сразу устанавливают переключатели в нужное положение.

Если они не знают значения измеряемого тока, то устанавливают на мультиметре предельное значение равное 10 А. Далее, прибор перенастраивается на меньшее значение, соответствующее току сети.

Следует помнить, что переключение осуществляется при обесточивании проверяемой электрической цепи. Используя универсальный прибор, который выполняет задание вольтметра и амперметра, косвенно измеряют сопротивление подключенного прибора. Для этого дополнительно проводят расчеты, связанные с законом Ома.

Принцип работы и виды амперметров

Амперметр — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения.

Читать еще:  N13p gl2 a1 характеристики

Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Комплектное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется «токоизмерительные клещи».

Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания), что может привести к коротким замыканиям!

Общая характеристика

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Приборы со стрелочной головкой

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Приборы с цифровым индикатором

Принцип действия стрелочной измерительной головки

Принцип действия самых распространённых в амперметрах систем измерения:

  • В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки устанавливается при равенстве вращающего момента и момента пружины.
  • В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
  • В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано — чаще всего 75 мВ). При высоких напряжениях (выше 1000 В) — в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока — магнитные усилители.

Устройство амперметра и вольтметра

Изначально вольтметры и амперметры были только механическими, и лишь спустя многие годы, с развитием микроэлектроники, начали выпускаться цифровые вольтметры и амперметры. Тем не менее, даже сейчас механические измерительные приборы пользуются популярностью. Они, по сравнению с цифровыми, устойчивы к помехам и дают более наглядное представление о динамике измеряемой величины. Их внутренние механизмы остаются практически теми же, что и канонические магнитоэлектрические механизмы первых вольтметров и амперметров.

В данной статье мы рассмотрим устройство типичного стрелочного прибора, чтобы каждый новичок мог бы понимать основные принципы работы вольтметров и амперметров.

В своей работе стрелочный измерительный прибор использует магнитоэлектрический принцип. Постоянный магнит с выраженными полюсными наконечниками закреплен неподвижно. Между этими полюсами расположен неподвижный стальной сердечник так, что в воздушном кольцеобразном зазоре между сердечником и полюсными наконечниками магнита формируется постоянное магнитное поле.

В зазор вставлена подвижная алюминиевая рамка, на которую очень тонким проводом намотана катушка. Рамка закреплена на полуосях, и может поворачиваться вместе с катушкой. К рамке спиральными пружинами прикреплена стрелка прибора. Через пружины к катушке подводится ток.

Когда по проводу катушки проходит ток I, то, поскольку катушка помещена в магнитное поле, и ток в ее проводниках течет пересекая перпендикулярно магнитные силовые линии в зазоре, на нее будет действовать вращающая сила со стороны магнитного поля. Электромагнитная сила создаст вращающий момент М, и катушка вместе с рамкой и стрелкой станет поворачиваться на некоторый угол α.

Поскольку индукция магнитного поля в зазоре неизменна (магнит постоянный), то вращающий момент будет всегда пропорционален именно току в катушке, и величина его будет зависеть от тока и от неизменных конструктивных параметров данного конкретного прибора (с1). Этот момент будет равен:

Препятствующий повороту рамки момент противодействия, возникающий из-за наличия пружин, окажется пропорционален углу закручивания пружин, то есть углу поворота стрелки, связанной с подвижной частью:

Таким образом, поворот будет продолжаться до тех пор, пока момент М, создаваемый током в рамке не окажется равным моменту противодействия Мпр от пружин, то есть пока не наступит равновесие. В этот момент стрелка остановится:

Очевидно, угол закручивания пружин будет пропорционален току рамки (и измеряемому току), по этой причине приборы магнитоэлектрической системы обладают равномерной шкалой. Коэффициент пропорциональности k между углом поворота стрелки и единицей измеряемого тока называется чувствительностью прибора.

Обратная величина именуется ценой деления или постоянной прибора. Значение измеренной величины определяется как произведение цены деления на количество делений отсчета на шкале.

Чтобы избежать мешающих колебаний подвижной рамки при переходах стрелки от одного ее положения к другому, в данных приборах применяют магнитно-индукционные или воздушные демпферы.

Магнитно-индукционный демпфер представляет собой пластину из алюминия, которая закреплена на поворотной оси прибора, и всегда движется вместе со стрелкой в поле постоянного магнита. Возникающие вихревые токи тормозят катушку. Суть в том, что по правилу Ленца, вихревые токи а пластине, взаимодействуя с порождающим их магнитным полем постоянного магнита, препятствуют движению пластины, и колебания стрелки быстро затухают. Роль такого магнитно-индукционного демпфера и выполняет алюминиевый каркас, на который намотана катушка.

При повороте рамки, магнитный поток от постоянного магнита, пронизывающий алюминиевый каркас, изменяется, а значит в алюминиевом каркасе индуцируются вихревые токи, которые при взаимодействии с магнитным полем постоянного магнита оказывают тормозящее действие, и колебания стрелки прекращаются.

Воздушные демпферы магнитоэлектрических приборов представляют собой цилиндрические камеры с помещенными внутри поршнями, связанными с подвижными системами приборов. Когда подвижная часть приходит в движение, поршень в форме крыла тормозится в камере, и колебания стрелки затухают.

Для достижения нужной точности измерений, прибор не должен быть подвержен влиянию силы тяжести в процессе измерения, а отклонение стрелки должно быть связано лишь с вращающим моментом, возникающим при взаимодействии тока катушки с магнитным полем постоянного магнита и с торможением рамки пружинами.

Чтобы исключить вредное влияние силы тяжести и избежать связанных с ним погрешностей, к подвижной части прибора добавляют противовесы в виде грузиков, перемещающихся на стержнях.

Для снижения трения стальные наконечники выполняются из отполированной износостойкой стали или из вольфрамо-молибденового сплава, а подпятники изготавливают из твердого минерала (агат, корунд, рубин и т. д.). Зазор между наконечником и подпятником настраивают при помощи стопорного винта.

Для точной установки стрелки в нулевое исходное положение, прибор оснащается корректором. Корректором в стрелочном приборе служит винт, выведенный наружу, и соединенный поводком с пружиной. При помощи винта можно передвигать немного спираль на оси, регулируя таким образом исходное положение стрелки.

Большинство современных приборов имеют подвижную часть, подвешенную на паре растяжек в виде упругих металлических лент, служащих для подачи тока на катушку, и создающих противодействующий момент. Растяжки соединены с парой плоских пружин, расположенных взаимно перпендикулярно.

Читать еще:  Anti spatter spray что это

Справедливости ради отметим, что кроме классического механизма, рассмотренного выше, встречаются также и приборы с магнитами не только п-образной формы, но и с цилиндрическими магнитами, и с магнитами в форме призм, и даже с внутрирамочными магнитами, которые сами могут быть подвижными.

Для измерения тока или напряжения, магнитоэлектрический прибор включают в цепь постоянного тока по схеме амперметра или вольтметра, разница лишь в сопротивлении катушки и в схеме включения прибора в цепь. Разумеется через катушку прибора не должен проходить весь измеряемый ток при измерении тока, и не должна потребляться большая мощность при измерении напряжения. Для создания надлежащих условий служит добавочный резистор, встроенный в корпус измерительного прибора.

Сопротивление добавочного резистора в схеме вольтметра превосходит сопротивление катушки во много раз, и этот резистор изготовлен из металла с чрезвычайно малым температурным коэффициентом сопротивления, такого как манганин или константан. Резистор, включаемый параллельно катушке в амперметре, называется шунтом.

Сопротивление шунта напротив во много раз меньше сопротивления измерительной рабочей катушки, поэтому через провод катушки проходит только мизерная доля измеряемого тока, в то время как основной ток течет через шунт. Добавочный резистор и шунт позволяют расширить пределы измерения прибора.

Направление отклонения стрелки прибора зависит от направления тока через измерительную катушку, поэтому при включении прибора в цепь важно правильно соблюсти полярность, иначе стрелка будет двигаться в другую сторону. Соответственно, магнитоэлектрические приборы в каноническом виде непригодны для включения в цепь переменного тока, поскольку стрелка будет просто вибрировать оставаясь на одном месте.

Тем не менее, к достоинствам магнитоэлектрических приборов (амперметров, вольтметров) относятся высокая точность, равномерность шкалы и устойчивость к помехам, порождаемым внешними магнитными полями. К недостаткам — непригодность к измерению переменного тока (чтобы измерить переменный ток, нужно будет его сначала выпрямить), требование к соблюдению полярности и уязвимость тонкой проволоки измерительной катушки к перегрузкам.

Амперметр — измеряем ток: назначение, схемы подключения, типы

Амперметр – это электроизмерительный прибор, предназначенный для фиксации силы постоянного либо переменного тока, протекающего в цепи — то есть устройство для измерения тока. Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток. Так как ток, который он измеряет зависит от сопротивления элементов цепи, то сопротивление амперметра должно быть максимально низким (очень маленьким). Это позволяет уменьшить влияние устройства для измерения тока на измеряемую цепь и повысить их точность.

Шкалу прибора градуируют в мкА, мА, А и кА, и в зависимости от требуемой точности и пределов измерения выбирают подходящий прибор. Увеличение измеряемой силы тока добиваются путем включения в цепь шунтов, трансформаторов тока, магнитных усилителей. Это позволяет увеличить предел измеряемой величины тока.

Схемы подключения амперметра

Рисунок — Схема прямого включения амперметра

Рисунок — Схема косвенного включения амперметра через шунт и трансформатор тока

Сфера применения амперметров

Приборы для измерения тока нашли применение в различных сферах. Их активно используют на крупных предприятиях, связанных с генерацией и распределением электрической, тепловой энергии. Также их используют в:

Но не только средние и крупные предприятия используют этот прибор: они востребованы и среди обычных людей. Практически любой опытный автоэлектрик имеет в арсенале подобное устройство, позволяющее проводить замеры показателей электропотребления приборов, узлов автомобилей и пр.

Типы амперметров

Исходя из вида отсчетного устройства амперметры делятся на приборы с:

— со стрелочным указателем;

— со световым указателем;

— с пишущим устройством;

По принципу действия амперметры разделяются на:

1. Электромагнитные – предназначены для использования в цепях постоянного, переменного тока. Обычно используются в привычных электроустановках переменного тока с частотой 50 Гц.

2. Магнитоэлектрические — предназначены для фиксации силы тока малых значений постоянного тока. Они имеют магнитоэлектрическое измерительное устройство и шкалу с проградуированными делениями.

3. Термоэлектрические приборы предназначены для измерения силы тока в цепях высоких частот. В состав таких приборов входят магнитоэлектрический механизм, выполненный в виде проводника, к которому приваривается термопара. Протекающий по проводку ток вызывает его нагрев, который фиксируется термопарой. Формирующееся излучение своим влиянием вызывает отклонение рамки на угол, который пропорционален силе тока.

4. Ферродинамические приборы — состоят из замкнутого магнитопровода, выполненного из ферромагнитного материала, сердечника и неподвижной катушки. Характеризуются высокой точностью измерения, надёжностью конструкции и низкой чувствительностью к воздействию электромагнитных полей.

5. Электродинамические устройства предназначены для замеров величины силы тока в цепях постоянного / переменного токов повышенных частот (до 200 Гц). Они чувствительны к перегрузкам и внешним электромагнитным полям. Но из-за высокой точности замеров их используют в роли контрольных приборов для поверки действующих амперметров.

6. Цифровые амперметры – современная модель приборов, сочетающая преимущества аналоговых приборов. На сегодня такие устройства завоевывали лидирующие позиции. Это объясняется удобством в работе, легкостью использования, небольшими размерами и высокой точностью получаемых результатов измерений. Кроме того, цифровые приборы можно использовать в разнообразных условиях: он не боится тряски, вибрации и пр. воздействий.

Рассмотрим несколько амперметров разных производителей и разных типов:

1. Амперметры Ам-2 DigiTOP

— Количество входов 1

— Измеряемый переменный ток 1 …50 А

— Погрешность измерения 1%

— Дискретность индикации 0,1 А

— напряжение питания -100…-400 В, 50 (+1) Гц Габаритные размеры 90x51x64 мм

Работоспособность и долговечность бытовой электротехники зависят от качества получаемой электроэнергии. Как правило, к выходу из строя электронной техники, будь то холодильники, телевизоры или стиральные машины, приводит повышение напряжения выше допустимых пределов. Наиболее опасно длительное повышение напряжения выше допустимой отметки. При этом выходят из строя блоки питания электронной техники, перегреваются обмотки электродвигателей, нередко происходит возгорание.

2. Амперметр лабораторный Э537

Данный прибор (амперметр Э537) предназначается для точного измерения силы тока в цепях переменного и постоянного тока.

Класс точности 0,5.

Диапазоны измерения 0,5 / 1 A;

Технические характеристики амперметра Э537:

Конечное значение диапазона измерений 0,5 А/1 А

Класс точности 0,5

Область нормальных частот (Гц) 45 — 100 Гц

Область рабочих частот (Гц) 100 — 1500 Гц

Габаритные размеры 140 х 195 х 105 мм

3. Амперметр СА3020

Цифровое устройство амперметр базовой модели выпускается в нескольких типовых модификациях в зависимости от базового значения параметров замеряемого тока. При заказе данной модели цифрового амперметра, требуется заявить, с каким базовым параметром силы тока Вам придётся работать: 1 А, 2 А или 5 А.

Базовые параметры замеряемого тока, Iн-1 Ампер (СА3020-1), 2 Ампер (СА3020-2) или 5 Ампер (СА3020-5);

Границы замеряемых токов от 0,01 Iн до 1,5 Iн;

Диапазон частот по замеряемым токам от 45 до 850 Герц;

Границы базовой допускаемой существующей погрешности ±0,2% к оптимальному значению параметров замеряемой силы тока;

напряжение по питанию — сеть переменного тока напряжением (85-260) Вольт и частотой (47-65) Герц или постоянное напряжение (120 — 300) Вольт;

Потребляемая устройством мощность не больше чем 4 ВА;

Размерные габариты 144x72x190 мм;

Масса не больше чем 0,55 кг;

Мощность, потребляемая измерительной цепью амперметров серии 3020, не превышает: для СА3020-1 – 0,12 ВA; для СА3020-2 – 0,25 ВA; для СА3020-5 – 0,6 ВA.

Амперметры. Виды и работа. Устройство и применение. Особенности

Чтобы измерить силу тока в некоторой электрической цепи, существуют приборы, называемые амперметры. Они включаются в цепь по последовательной схеме. Внутреннее сопротивление амперметров очень мало, поэтому такое измерительное устройство не влияет на параметры электрического тока измеряемой цепи. Единицей измерения силы тока является ампер.

Читать еще:  Английские панели для стен

Шкалы приборов могут градуироваться в различных долях ампера: микроамперах, миллиамперах и т.д. Соответственно такие приборы называют микроамперметрами, миллиамперметрами и т.д. Чтобы расширить пределы измерений, амперметры включают в цепь с применением трансформатора, либо в параллели с шунтом. В этом случае только небольшая часть тока будет протекать через амперметр, а основная часть тока пойдет через шунт.

Для крепления шунта к амперметру применяются специальные гайки. Запрещается подключать шунт к амперметру при включенном питании электрической сети. Полярность прибора при подключении также имеет большое значение. Если перепутать полярность, то стрелка прибора будет уходить в другую сторону, а цифровой амперметр, покажет отрицательную величину.

Виды амперметров

Точность показаний прибора зависит от принципа действия и вида устройства.

Существует два основных вида амперметров:
  1. Аналоговые.
  2. Цифровые.
Первый вид в свою очередь делится на следующие устройства:
  • Магнитоэлектрические.
  • Электромагнитные.
  • Электродинамические.
  • Ферродинамические.
По виду измеряемого тока амперметры делятся:
  • Для переменного тока.
  • Для постоянного тока.

Существуют и другие специализированные приборы для измерения тока, которые применяются в узконаправленных областях, и не распространены так широко, как перечисленные выше.

Конструктивные особенности и работа
Магнитоэлектрические амперметры

Принцип действия такого вида прибора основывается на взаимодействии магнитного поля магнита и подвижной катушки, находящейся в корпусе прибора.

Достоинствами такого амперметра является низкое потребление электроэнергии при функционировании, высокая чувствительность и точность измерений. Все магнитоэлектрические амперметры оснащены равномерной градуировкой шкалы измерений. Это позволяет произвести измерения с высокой точностью.

К недостаткам магнитоэлектрического амперметра относится его сложность внутренней конструкции, наличие движущейся катушки. Такой прибор не является универсальным, так как он действует только для постоянного тока.

Несмотря на недостатки, магнитоэлектрический вид прибора широко применяется в различных областях промышленности, в лабораторных условиях.

Электромагнитные

Амперметры с электромагнитным принципом работы не имеют в своем устройстве движущейся катушки, в отличие от магнитоэлектрических моделей. Устройство их значительно проще. В корпусе находится специальное устройство и один или несколько сердечников, которые установлены на оси.

Электромагнитный амперметр имеет меньшую чувствительность, по сравнению с магнитоэлектрическим прибором. А значит, точность его измерений будет ниже. Преимуществами таких приборов является универсальность работы. Это означает, что они могут измерять силу тока как в цепи постоянного, так и переменного тока. Это значительно расширяет его сферу применения.

Электродинамические

Метод работы таких приборов заключается во взаимодействии электрических полей токов, которые проходят по электромагнитным катушкам. Конструкция прибора состоит из подвижной и неподвижной катушки. Универсальная работа на любом виде тока является основным достоинством электродинамических амперметров.

Из недостатков стоит выделить большую чувствительность, так как они реагируют даже на незначительные магнитные поля, расположенные в непосредственной близости к ним. Подобные поля способны создавать для электродинамических приборов большие помехи, поэтому такие амперметры применяют только в защищенном экраном месте.

Ферродинамические

Такие приборы, обладают наибольшей эффективностью и точностью измерений. Магнитные поля, расположенные рядом с прибором, не оказывают на него заметного влияния, поэтому нет необходимости в установке дополнительных защитных экранов.

Конструкция такого амперметра включает в себя замкнутый ферримагнитный провод, а также сердечник и неподвижную катушку. Такое устройство позволяет повысить надежность работы прибора. Поэтому ферродинамические виды амперметров чаще всего используются в военной промышленности и оборонных учреждениях. К его преимуществам также можно отнести удобство и простоту пользования, точность всех измерений, по сравнению с ранее рассмотренными видами приборов.

Цифровые

Кроме рассмотренных приборов, существует цифровой вид амперметров. В настоящее время они все шире используются в различных сферах производства, а также в бытовых условиях. Такая популярность цифровых приборов связана с удобством пользования, небольшими размерами и точными измерениями. Вес прибора также очень незначительный.

Цифровые модификации используют в различных условиях, он невосприимчив к вибрациям, в отличие от механических аналоговых приборов.

Цифровые приборы, не боятся незначительных механических ударов, которые возможны от работающего рядом оборудования. Расположение в вертикальной или горизонтальной плоскости прибора не имеет влияния на его работоспособность, так же как изменение температуры и давления. Поэтому такой прибор применяют в условиях внешней среды.

Измерение переменного и постоянного тока

Все рассмотренные приборы способны измерять постоянный ток. Однако иногда требуется измерить силу переменного тока. Если у вас для этого нет отдельного амперметра, то можно собрать элементарную схему.

Существуют и специальные приборы, измеряющие переменный ток. Оптимальным выбором прибора будет мультиметр, в котором имеется возможность измерения переменного тока.

Чтобы выполнить правильное измерение, необходимо определить вид тока, то есть, переменный ток в сети, или постоянный. В противном случае измерение будет ошибочным.

Общий принцип действия амперметра

Если рассматривать классический принцип работы амперметра, то его действие заключается в следующем.

На оси кронштейна вместе с постоянным магнитом расположен стальной якорь с закрепленной на нем стрелкой. Воздействуя на якорь, постоянный магнит передает ему магнитные свойства. В этом случае позиция якоря находится вдоль силовых линий, проходящих вдоль магнита.

Такая позиция якоря определяет нулевое расположение стрелки по градуированной шкале. При протекании тока от генератора или другого источника по шине, возле нее возникает магнитный поток. Силовые линии этого потока в точке расположения якоря направлены под прямым углом к силовым линиям магнита.

Магнитный поток, образованный электрическим током, действует на якорь, который стремится повернуться на 90 градусов. В этом ему мешает магнитный поток, образованный в постоянном магните. Сила взаимодействия двух потоков зависит от направления и величины электрического тока, протекающего по шине. На эту величину и происходит отклонение стрелки прибора от нуля.

Сфера применения

Цифровые и аналоговые амперметры, используются в различных отраслях промышленности и народного хозяйства. Особенно широко они применяются в энергетической отрасли промышленности, радиоэлектронике, электротехнике. Также их могут использовать в строительстве, в автомобильном и другом транспорте, в научных целях.

В бытовых условиях прибор также часто используется обычными людьми. Амперметр полезно иметь с собой в автомобиле, на случай выявления неисправностей электрооборудования в пути.

Аналоговые приборы до сих пор также применяются в различных областях жизни. Их преимуществом является то, что для работы не требуется подключение питания, так как они пользуются электричеством от измеряемой цепи. Также их удобство состоит в отображении данных. Многим людям привычнее смотреть за стрелкой. Некоторые устройства оснащены регулировочным винтом, который позволяет точно настроить стрелку на нулевое значение. Инертность работы прибора отрицательно влияет на его применяемость, так как для стрелки необходимо время для нахождения устойчивой позиции.

Как выбрать

Для более точных измерений следует выбирать прибор сопротивлением до 0,5 Ом. Лучше, если зажимы контактов будут покрыты специальным антикоррозийным слоем.

Корпус должен быть качественного изготовления, без повреждений, желательно герметичного исполнения, для предотвращения проникновения влаги. Это продлит его срок службы и повысит точность показаний.

Наиболее удобный вид амперметра – это цифровой. Хотя в настоящее время более популярными являются мультиметры, в состав которых также входит функция измерения тока.

Запрещается подключение амперметра в сеть напрямую без нагрузки, во избежание выхода его из строя. При измерениях нельзя прикасаться к неизолированным токоведущим элементам прибора, так как возможен удар электрическим током. При работе с амперметром следует соблюдать осторожность и внимательность.

Ссылка на основную публикацию
Adblock
detector