Активный выпрямитель принцип действия

Активный выпрямитель (AFE)

Выпрямитель – это преобразователь переменного напряжения в постоянное. Неуправляемые выпрямители выполняются на базе диодов, управляемые – на базе тиристоров или других управляемых вентильных приборов. Принцип выпрямления основан на использовании свойств силовых электронных вентилей проводить однонаправленный ток для преобразования переменного тока в постоянный без существенных потерь энергии. Выпрямители потребляют из сети несинусоидальный ток.

Процесс управления выпрямителем приводит к повышению коэффициентов несинусоидальности как тока, так и напряжения.

Проблемы возникают следующие:

  1. искажение формы питающего напряжения;
  2. падение напряжения в распределительной сети;
  3. резонансные явления на частотах высших гармоник;
  4. наводки в телекоммуникационных и управляющих сетях;
  5. повышенный акустический шум в электромагнитном оборудовании;
  6. вибрация в электромашинных системах;
  7. снижение электрического и механического КПД нагрузок;
  8. ухудшение характеристик защитных автоматов;
  9. завышению требуемой мощности автономных электроэнергетических установок;
  10. нагрев и дополнительные потери в трансформаторах и электрических машинах;
  11. нагрев конденсаторов;
  12. нагрев кабелей распределительной сети.

Для устранения отмеченных выше недостатков можно рекомендовать активный выпрямитель (рис.1).

Такие выпрямители комплектуются полностью управляемыми вентилями с обратными диодами. С помощью широтно-импульсной модуляции реализуются режимы принудительного формирования сетевого тока. Форму тока приближают к синусоидальной с регулируемой начальной фазой, что и обеспечивает желаемый результат (форму кривой тока и коэффициент мощности). При помощи коррекции коэффициента мощности возможно не только организовать потребляемый ток сети, совпадающий по форме и фазе с напряжением, но и обеспечить заданный уровень постоянного напряжения на конденсаторе. Кроме того, в электроприводе за счет связи инвертора-выпрямителя с питающей сетью, возможна обратная рекуперация энергии, получаемая при работе привода в генераторном режиме.

Наиболее массовое практическое применение в системах регулируемых электроприводов переменного тока получили двухзвенные преобразователи частоты с промежуточным звеном постоянного тока, а из них – преобразователи с автономными инверторами напряжения.

У этого преобразователя недостаточно полно проработаны некоторые вопросы энергосбережения, качества электропотребления и электромагнитной совместимости преобразователей. При использовании пассивного выпрямителя, состоящего из диодного моста и фильтрующего конденсатора, несмотря на малые пульсации выпрямленного выходного напряжения на входе получаем несинусоидальный ток с большими пиковыми значениями. Это значительно понижает коэффициент мощности системы, вызывает существенные радиопомехи. Улучшить форму тока можно путем внесения в цепь дополнительных пассивных элементов. Но это приводит к увеличению массогабаритных показателей устройства, так как реактивные компоненты в таком случае работают на относительно низких частотах. Кроме этого выпрямитель подразумевает поток энергии только в одном направлении от сети в нагрузку. Проблему перенапряжения в звене постоянного тока, возникающую при торможении привода (особенно при большой мощности) в этом типе преобразователя приходится решать с помощью тормозного резистора очень большой мощности, просто рассеивая выделяющуюся энергию в тепло (рис.2).

На рис.3 представлены способы управления энергией при работе частотного электропривода.

Улучшить показатели преобразователей частоты помогает использования в звене постоянного тока выпрямителей с принудительной коммутацией. Структуру силовых цепей двухзвенного ПЧ с активным выпрямителем напряжения иллюстрирует рис.4. В силовой цепи последовательно включены активный выпрямитель напряжения (АВН), фильтр Ф и автономный инвертор напряжения АИН. Силовые полупроводниковые переключающие элементы выпрямителя и инвертора, обладающие полной управляемостью и двусторонней проводимостью тока, условно показаны в виде ключей. Выпрямитель АВН, выполненный по трехфазной мостовой схеме, преобразует напряжение питающей сети переменного тока в стабилизированное напряжение постоянного тока Ud на конденсаторе фильтра. Трехфазный мостовой АИН работает в режиме широтно-импульсной модуляции (ШИМ) и преобразует это постоянное напряжение в переменное напряжение на выходе с требуемыми значениями частоты и амплитуды основной гармоники. Это обеспечивает благоприятную форму тока двигателя и равномерность его вращения в широком диапазоне скоростей.

выпрямителем и автономным инвертором напряжения

Активный выпрямитель выполняется по схеме, полностью идентичной схеме инвертора и по существу представляет собой обращенный АИН, также работающий в режиме ШИМ. Так же, как и автономный инвертор, активный выпрямитель инвертирует постоянное напряжение фильтрового конденсатора Ud в импульсное напряжение на своих зажимах переменного тока А, В и С. Эти зажимы связаны с питающей сетью через буферные реакторы БР. В отличие от регулируемой рабочей (полезной) частоты напряжения на зажимах переменного тока АИН А1, В1 и С1 рабочая частота напряжения на зажимах переменного тока АВН постоянна и равна частоте питающей сети. Разность мгновенных значений синусоидального напряжения питающей сети и импульсного напряжения на зажимах переменного тока АВН воспринимаются буферными реакторами БР, являющимися неотъемлемыми элементами системы, индуктивность обеспечивает повышающий режим работы преобразователя. Благодаря использованию режима ШИМ импульсное напряжение, формируемое активным выпрямителем на стороне переменного тока, имеет благоприятный гармонический состав, в котором основная (полезная) гармоника и высшие гармоники существенно различаются по частоте. Это создает благоприятные условия для фильтрации высших гармоник тока, потребляемого из питающей сети, буферными реакторами. Таким образом решается задача потребления из сети практически синусоидального тока.
Фазовый угол потребляемого тока зависит от соотношения амплитуд и фазовых углов напряжений, приложенных к реакторам со стороны сети и со стороны активного выпрямителя, а также от параметров (индуктивности и активного сопротивления) реактора. Варьируя с помощью системы управления АВН параметрами основной гармоники его переменного напряжения на зажимах А1, В1 и С1, можно обеспечить потребление из сети необходимого тока с заданным фазовым углом. Иными словами, можно обеспечить работу преобразователя частоты с заданным значением коэффициента мощности, например равным единице, либо «опережающим», либо «отстающим» коэффициентом мощности.
Как преобразователь энергии постоянного тока в энергию переменного тока автономный инвертор обладает чрезвычайно ценным свойством – возможностью двустороннего энергетического обмена между сетями постоянного и переменного тока. Это свойство сохраняется и в инверсной схеме включения автономного инвертора в качестве активного выпрямителя. В итоге двухзвенный ПЧ с активным выпрямителем обеспечивает двусторонний энергетический обмен между питающей сетью и электрическим двигателем, в том числе режимы рекуперации энергии в питающую сеть. Благодаря этому возможно построение энергосберегающих систем электропривода в различных сферах применения с высоким качеством потребления электроэнергии (Рис.5).

Компания Delta Electronics предлагает на отечественном рынке модуль рекуперации AFE 2000 не случайно. На настоящий момент для многих предприятий становится существенным рост тарифов за электроэнергию, что влечет повышение стоимости конечного товара, необходимость улучшения качества промышленной сети. Также было принято законодательное решение о мерах по экономии электроэнергии, энергосбережению. Компания «Элпрон» предлагает установку активных рекуператоров «под ключ», то есть от проведения исследований и экономического обоснования до монтажа на объекте.

Однофазный мостовой активный выпрямитель напряжения (АВН)

Силовая схема такого преобразователя приведена на рис.3.2. В отличие от рассмотренной выше схемы активного выпрямителя (рис.3.1) работа представленного устройства может протекать как в режиме активного выпрямителя напряжения, так и в режиме инвертора, ведомого сетью, с регулированием путем IIТИМ по синусоидальному закону выходного тока.

Рассмотрим работу такого преобразователя, обратившись к его силовой схеме (рис.3.2,а) и кривым токов и напряжений (3.2,6). Силовая схема полностью совпадает со схемой однофазного автономного инвертора (рис.2.8) напряжения (АИН) и представляет собой инверсное относительно зажимов питания и нагрузки включение схемы АИН. Характерными особенностями, присущими активному преобразователю, являются [6]:

наличие полностью управляемых со встречнопараллельно включенным транзистором и диодом ключей УК1УК4, образующими мостовой полупроводниковый коммутатор ПК;

НАУЧНО-ИНФОРМАЦИОННЫЙ ЦЕНТР САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО ТЕХНОЛОГИЧЕСКОГО УНИВЕРСИТЕТА РАСТИТЕЛЬНЫХ ПОЛИМЕРОВ

наличие буферного реактора (БР), включенного в диагональ моста по переменному току;

наличие конденсатора С, включенного параллельно нагрузке, представляющей в рассматриваемом случае последовательное соединение активного сопротивления RH и ЭДС Ен.

Эти особенности в сочетании с алгоритмом управления ключами методом ШИМ по синусоидальному закону обеспечивают работу преобразователя как в режиме активного выпрямителя, так и в режиме инвертора, обеспечивая передачу энергии от питающей сети к нагрузке и обратно. Устройство управления ключами УК1УК4 полупроводникового коммутатора ПК в обоих режимах соответствует системе ШИМ по синусоидальному закону трехфазного мостового инвертора, рассмотренного выше. Формирование импульсов управления ключами УК1УК4 легко

проследить по точкам пересечения модулирующих синусоид Имь Им2, сдвинутых друг относительно друга на 180°, с пилообразным двухполярным опорным напряжением Won (рис.3.3,а). На рис.3.3,б, в приведены соответственно сформированные таким путем импульсы управления ключами УК1, УК4 и УК2, УКЗ.

Читать еще:  Английское колесо своими руками чертежи

Из рассмотрения диаграммы включения ключей УКНУК4 (рис.3.3,б, в) следует, что паузы между импульсами выходного напряжения

Ыав в течение полупериода образуются в результате замыкания ключей УК1, УКЗ или УК2, УК4.

С помощью ключей УК1УК4 в диагонали моста по переменному току на зажимах aв полупроводникового коммутатора ПК формируются импульсы напряжения, ширина которых изменяется по синусоидальному закону (рис.3.3,г). При одновременно замкнутых ключах УК1, УК2

положительный полюс напряжения конденсатора Uc подключается к зажиму «а», а отрицательный к зажиму «в». При одновременном замыкании ключей УК1, УКЗ или УК2, УК4 зажимы aв закорачиваются и напряжение на них становится равным нулю (пауза). В результате на зажимах ав формируется условный положительный импульс напряжения. Аналогичным образом на зажимах aв формируются отрицательные импульсы напряжения.

Высота импульсов равна напряжению Uc на конденсаторе. Изменяя фазу моделирующей синусоиды устройства управления относительно фазы напряжения сети, можно регулировать фазу импульсов напряжения Ыав относительно напряжения сети U. На рис.3.2,б приведен случай, когда импульсы напряжения Ыав сдвинуты относительно фазы напряжения сети U на 90°. Рассмотрим подробно работу преобразователя в таком режиме, соответствующем работе активного выпрямителя напряжения (АВН). В промежутке времени i9 = i90i9, (рис.3.2,б) на зажимах aв формируются отрицательные импульсы Ыав. Их формирование проходит следующим образом. На отрезках времени пауз между импульсами, когда происходит замыкание ключей УК4 и УК2, в УК4 открывают транзистор. В результате при полярности напряжения сети, обозначенной без скобок, ток потечет по

цепи (+и)БРТ4Д2в(Ы). Ключ УК2 открывается автоматически за счет открывания его диода Д2.

Зажимы ав замыкаются. В результате происходит замыкание источника сети на буферный реактор БФ. Скорость нарастания тока при этом будет равна

где Ь индуктивность реактора.

а

Рис.3.2. Однофазный мостовой активный преобразователь напряжения: а силовая схема; б кривые тока и напряжения

Продолжительность такого состояние определяет паузу между импульсами, которая оканчивается в момент включения транзистора ТЗ ключа УКЗ. При включении ТЗ происходит коммутация тока с диода Д2 на

транзистор ТЗ по цепи +исТЗД2(Ыс). Диод Д2 запирается напряжением

Uc. Возникает ЭДС самоиндукции ес = Ldi / dt в реакторе БР с

полярностью, обозначенной без скобок. В результате ток потечет по цепи

(+и)БРаТ4СТЗв(и). Под воздействием суммы напряжений U+ec+Uc в

промежутке времени i90

19, ток будет нарастать. В момент времени //

системой управления изменяется полярность импульсов напряжения Ыав путем следующего алгоритма включения ключей. На отрезке времени t=ti

t2 на протяжении каждой паузы зажимы aв замыкаются, например, включением транзистора ТЗ и диода Д1. В результате ток потечет по цепи

(+и)БРаД]ТЗв(и). Во время паузы происходит нарастание тока и накапливание энергии в БР WL = LI2 / 2. Пауза оканчивается при выключении транзистора ТЗ. Возникает ЭДС самоиндукции ес, которая в совокупности с напряжением сети U станет проводить ток по цепи(+Ы)БРаД1СД2(Ы) встречно 32 напряжению конденсатора. В результате в промежутке времени ток начнет спадать по синусоиде. При смене полярности напряжения (полярность в скобках) сети в момент

S 32 формирование паузы может происходить включением транзистора Т1 и диода ДЗ или Т2, Д4 (ключи УК4, УК2, рис.3.3,б, в). Ток при этом потечет по цепи ((+)и)вДЗТ1БР(

и). Направление тока в БР изменится (пунктир). Положительный импульс формируется включением транзистора Т2. В результате произойдет коммутация тока с диода ДЗ на транзистор Т2. Возникнет ЭДС самоиндукции с полярностью, обозначенной в скобках, и

ток потечет по цепи ((+)Ы)вТ2СТ1аБР(()и). Поскольку протекание

тока i (пунктир) происходит под воздействием суммы напряжения U+ec+Uc,

то ток в промежутке времени $2 193 будет нарастать. В момент времени

= i93 начинается формирование отрицательных импульсов напряжения

Ыав. Паузу формируют, например, путем включения транзистора Т2 ключа

УК2. Ток в таком случае будет протекать по цепи ((+)Ы)вТ2Д4аБР(Ы). Зажимы aв будут замкнуты. Формирование импульса производят путем выключения транзистора Т2. Это приводит к возникновению ЭДС

самоиндукции ес (полярность в скобках) и протеканию тока по цепи (+)ЫвДЗСД4аБР(Ы). На отрезке времени i93 i94 ток протекает под воздействием суммы напряжений Ы+ес встречно напряжению на конденсаторе, поэтому происходит снижение тока.

Из рис.3.2,б видно, что сдвиг импульсов напряжения Ыав на 90° приводит к совпадению по фазе тока и напряжения сети, как и в случае неуправляемого выпрямителя при его работе на активную нагрузку. Отсюда такие преобразователи получили название активных выпрямителей напряжения (АВН). Рассмотренный преобразователь может работать в режиме инвертора синусоидального тока, ведомого сетью, если сдвинуть

НАУЧНО-ИНФОРМАЦИОННЫЙ ЦЕНТР САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО ТЕХНОЛОГИЧЕСКОГО УНИВЕРСИТЕТА РАСТИТЕЛЬНЫХ ПОЛИМЕРОВ

импульсы напряжения Ыав более чем на 90°. Непременными условиями

инвертирования являются условия: Ыс>и, и частота моделирующей синусоиды им должна быть строго равна частоте сети, как и в случае активного выпрямителя.

Рис.3.3. Кривые напряжений устройства управления однофазным мостовым

При положительной полуволне напряжения сети инвертирование происходит следующим образом. Вначале происходит формирование положительного импульса напряжения Ыав на зажимах «а», «в» путем

открывания транзисторов Т1 и Т2 ключей УК1, УК2. Поскольку ис>и, то протекание тока / (пунктир) будет направлено встречно напряжению сети по цепи (+ис)Т1аБР(+и)вТ2(ис). Вектора тока 7 и напряжения и при этом будут совпадать. А это означает, что источник принимает энергию, т. е. происходит рекуперация энергии. Пауза формируется путем выключения транзистора Т1, в результате чего возникает ЭДС самоиндукции ес с полярностью в скобках.

Запасенная в реакторе энергия IVь = Ы’ 12 будет поступать в сеть за счет протекания тока по цепи (+)есивТ2Д4а(ес). Зажимы ав замыкаются в течение паузы. Поскольку ширина импульсов изменяется по синусоидальному закону, то и первая гармоника тока I будет близка к синусоиде. Работа инвертора при смене полярности напряжения сети протекает аналогичным образом. Таким образом, с помощью полупроводникового коммутатора ПК формируются синусоидальные полуволны тока, протекающего соответственно встречно полуволнам напряжения сети, как это показано на рис.3.4,б. Т. е. практически мы получаем инвертор синусоидального тока, ведомый сетью.

На рис.3.4,а в качестве примера приведены кривые напряжений и тока для случая, когда на протяжении лишь части полупериода происходит рекуперация: на отрезках времени «90 .9, и 92 «93. На участках полупериода «9, «92 и «93 3А ток и напряжение сети имеют одинаковые знаки, что говорит о работе АВН в режиме выпрямителя.

Рис.3.4. Кривые напряжений и тока АВН: а при рекуперации на отрезках времени 3

Однофазный активный выпрямитель напряжения

Рассмотрим подробнее работу Однофазного мостового активного выпрямителя напряжения (рисунок 32). Нетрудно видеть, что эта схема полностью совпадает со схемой однофазного инвертора напряжения и представляет собой инверсное относительно зажимов питания и нагрузки включение схемы автономного инвертора напряжения. Перечислим характерные признаки, присущие схеме активного преобразователя напряжения, обеспечивающие неизменную полярность на зажимах цепи постоянного тока:

— наличие полностью управляемых полупроводниковых приборов, шунтированных встречно — параллельно включенными обратными диодами, образующие совместно с транзисторами управляемые ключи (УК1,УК2, УК3 и УК4), обладающие двухсторонней проводимостью тока при наличии включающих сигналов управления. При отсутствии сигналов управления ключи обладают односторонней (обратной) проводимостью;

— буферного реактора (БР) во входной цепи переменного тока;

— включение фильтрующего конденсатора параллельно нагрузке на выходных зажимах преобразователя.

Эти особенности в сочетании с импульсно-модуляционными алгоритмами работы преобразователя обеспечивают возможность его работы как в выпрямительном, так и в инверторном режимах работы при неизменной полярности выходного напряжения с реализацией возможности двухсторонней передачи электрической энергии от питающей сети в нагрузку и обратно

Рисунок 32. Однофазная мостовая схема активного выпрямителя тока

Обозначения элементов схем, приведенных на рисунках 32 и 33:

ua— источник напряжения переменного тока;

Eнг— источник напряжения постоянного тока;

VT1, VT2, VT3 и VT4- полностью управляемые полупроводниковые ключи;

БР- буферный реактор;

Zнг, Rнг, Lнг— полное, активное и индуктивное сопротивления цепи нагрузки;

Рисунок 33. Однофазная мостовая схема активного выпрямителя

На рисунке 33 стрелками показано направление токов цепей преобразователя, соответствующие выпрямительному режиму работы силовой схемы. Вентильный блок содержит четыре полностью управляемых полупроводниковых ключа (УК1,УК2, УК3 и УК4). Напомним, что полностью управляемый полупроводниковый ключ- это транзистор и встречно – параллельно включенный диод. Так, УК1 –это VT1 и VD1 (смотри схему рисунок 33). Входное напряжение выпрямителя (напряжение на зажимах а-в (Uав), представляющее собой инвертированное напряжение цепи постоянного тока, может регулироваться по величине и по фазе за счет изменения глубины модуляции и фазы модулирующего сигнала относительно сетевого напряжения. Частота напряжения на силовом входе вентильного блока Uав строго поддерживается равной частоте сети переменного тока, к которой подключен активный выпрямитель. Источник входного (сетевого) напряжения переменного тока (Ua) подключается к входам вентильного блока (зажимы а-в) через буферный реактор, Положительный импульс напряжения Uав получается при одновременном открытых ключах УК1 и УК2, отрицательный импульс- при открытых ключах УК3 и УК4. При одновременной проводимости ключей УК1 и УК3 или УК2 и УК4 входное напряжение преобразователя (Uав) равно нулю. На выходе выпрямителя включен конденсатор С, фильтрующий напряжения цепи постоянного тока. Нагрузка представлена последовательно включенными комплексным сопротивлением Zнг и источником противо-ЭДС Енг. Дискретные сигналы управления ключей силовой схемы формируются схемой управления.

Читать еще:  127 Вольт интернет магазин

Прицип работы схемы управления можно пояснить с помощью рисунка 34, на котором изображены пилообразное (опорное) напряжение uоп, напряжение управления uy1 (модулирующего напряжения) транзисторами одного плеча (или одной фазы трехфазной схемы) моста, а также функции состояния двух транзисторов этого плеча моста ki1 и 1-ki1. (например, ключей VT1-VD1 и VT4-VD4, соответственно), или фазы а трехфазного моста.

Рисунок 34.Опорное напряжение, напряжение управления и функции состояния транзисторов одного плеча моста АИН в режиме синусоидальной ШИМ

Если напряжения управления синусоидальны и их амплитуда не превышает амплитуду опорного напряжения, то считается, что преобразователь работает в режиме синусоидальной ШИМ. Такой принцип управления реализуется и трехфазных мостовых схемах.

В реальных установках, вследствие дискретности микропроцессорных устройств управления, напряжения управления имеют ступенчатую форму с «гладкими» составляющими, близкими по форме к синусоиде. Длительность цикла работы микропроцессорных систем управления Δty во многих случаях принимается равной периоду Tоп пилообразного напряжения. В пределах этого периода напряжения управления всех фаз неизменны. Временные диаграммы, приведенные на рисунке 34, построены с учетом этой особенности систем.

В моменты равенства опорного напряжения и напряжений управления осуществляются переключения транзисторов. Существует минимально допустимое время переключения транзисторов, которое несколько сужает активную зону опорного напряжения (участвующую в формировании импульсов управления) на величину Duоп сверху и снизу. Если амплитуду опорного напряжения принять равной 1, то в соответствии с рисунком 34 активная зона напряжений управления находится в пределах от(–1+Δuоп) до (1–Δuоп).

Если напряжение управления какой-либо фазы находится в активной зоне пилообразного напряжения, то в течение периода Tоп в данной фазе происходит одно включение и одно выключение транзистора с соответствующими переключениями токов, одно включение и одно выключение обратного диода, а также одно включение и одно выключение транзистора без тока. Если напряжение управления выходит за пределы активной зоны пилообразного напряжения, то в данной фазе на данном периоде вентили не переключаются, если ток фазы нагрузки не изменяет знак.

При работе в режиме ШИМ «гладкие» составляющие выходных напряжений инвертора в первом приближении подобны напряжениям управления фаз (при условии постоянства напряжения конденсатора в цепи постоянного тока).

На рисунке 35 изображены опорное напряжение uоп и напряжение управления uy1 одной фазы при выходе напряжения управления на некоторых отрезках времени за пределы активной зоны опорного напряжения (ограниченной пунктирными линиями). В рассматриваемом случае АИН работает в режиме перемодуляции.

Рисунок 35. Опорное напряжение и напряжения управления АИН в режиме перемодуляции

На тех отрезках времени (рисунок 35), на которых напряжения управления выходят за пределы рабочей зоны опорного напряжения, переключения вентилей управляющими импульсами не производятся. На этих участках фактические напряжения управления могут быть представлены прямыми линиями, проходящими по границам рабочей зоны на уровне –1+Δuоп или 1–Δuоп. При этом, как изображено на рисунке 35, фактическое напряжение управления uоy1 приближается по форме к трапеции.

При работе в режиме перемодуляции «гладкие» составляющие выходных напряжений инвертора в первом приближении подобны указанным трапецеидальным (усеченным) напряжениям управления фаз.

При дальнейшем увеличении амплитуды напряжения управления uy1 трапецеидальное напряжение uоy1 приближается к прямоугольной форме. АИН переходит в режим работы при фазной коммутации.

При уменьшении амплитуды модулирующего сигнала величина входного тока уменьшается, а изменение начальной фазы модулирующего сигнала по отношению к напряжению сети переменного тока можно обеспечить коэффициент сдвига по основной гармоники равным единице, либо другого требуемого значения, как индуктивного, так и емкостного.

Высшие гармоники кривой входного тока фильтруются с помощью индуктивности буферных реакторов. При этом эффективность работы фильтра зависит от величины несущей частоты, с которой переключаются транзисторы. В 70-х годах прошлого века известный ученый Маевский О.А. доказал эффективность преобразования электрической энергии с использованием высокой несущей частоты по сравнению с преобразованием энергии на сетевой частоте. Он утверждал, что «при частотном преобразовании реактивной мощности нелинейными активными сопротивлениями коэффициентом пропорциональности при превращении реактивной мощности одной частоты в реактивную мощность другой является отношение их частот» [10]. Другими словами реактивная мощность высокой частоты, преобразуемая в реактивную мощность более низкой частоты, увеличивается в число раз, равное отношению несущей частоты к сетевой частоте и подавление высших гармоник, содержащихся в кривой потребляемого активным выпрямителем тока осуществляется при меньшем значении индуктивности буферных реакторов.

В настоящее время активные выпрямители большой мощности работают при значении несущей частоты от 2,5 до 5 кГц. Дальнейшее повышение несущей частоты ограничивается существенным увеличением потерь мощности в транзисторах и их перегревом, что недопустимо.

Дата добавления: 2015-10-18 ; просмотров: 2476 . Нарушение авторских прав

Векторное управление активным выпрямителем напряжения

Рубрика: Технические науки

Дата публикации: 03.05.2016 2016-05-03

Статья просмотрена: 1672 раза

Библиографическое описание:

Козлов М. Д. Векторное управление активным выпрямителем напряжения // Молодой ученый. — 2016. — №9. — С. 184-189. — URL https://moluch.ru/archive/113/29440/ (дата обращения: 17.01.2020).

Замкнутые системы регулируемых электроприводов, как правило, используют двухзвенные преобразователи с промежуточным звеном постоянного тока, включающие в себя неуправляемый выпрямитель, силовой фильтр (СФ) и инвертор с широтно-импульсной модуляцией. Замена диодного выпрямителя на активный преобразователь, выполненного на полностью управляемых ключах, работающий в импульсно-модуляционных алгоритмах управления, позволяет обеспечить двусторонний обмен энергией между первичны источником и двигателем, и таким образом, улучшить электромагнитную совместимость и экономичность использования электроэнергии путем повышения КПД всей системы в целом за счет рекуперации энергии движущихся частей машины. Такие активные преобразователи могут быть построены на основе автономного инвертора напряжения (АИН), если его обратить на сторону переменного тока [1 с.305; 2 с. 400].

Активный преобразователь напряжения может работать в режиме выпрямителя, если передача энергии идет из питающей сети в двигатель и сетевым инвертором пре рекуперации энергии в питающую сеть. В дальнейшем АПН, работающий в выпрямительном режиме, называется активным выпрямителем напряжения (АВН). Работа АВН основана на импульсном повышающем напряжение регуляторе, поэтому он обязательно содержит в своем составе токоограничивающий дроссель, устанавливаемый на стороне переменного тока. На выходе АПН устанавливается конденсатор, обеспечивающий стабилизацию выпрямленного напряжения. [4 с. 256].

В этих преобразователях улучшен гармонический состав тока, потребляемого из сети, а также имеется возможность получения желаемого значения коэффициента мощности, в том числе близкого к единице.

Рис. 1. Трехфазный АВН

АВН могут применяться в трех случаях [5 с.128]:

1) для получения стабильного постоянного напряжения от сети переменного с возможностью рекуперации энергии;

2) в качестве преобразователя для питания двигателей постоянного тока с возможностью регулирования скорости и рекуперативного торможения;

3) в качестве первого звена в двухзвенных преобразователях для питания асинхронных двигателей с возможностью регулирования скорости и рекуперативного торможения.

Существует несколько подходов к векторному управлению активными выпрямителями напряжения с преобразованием координат [1 с.205; 3 с.356].

В этой статье рассмотрен подход, основанный на раздельном управлении АВН по проекциям Ix и Iy обобщенного вектора сетевого тока.

Описание электромагнитных процессов проводится в ортогональной системе координат x,y, связанной с результирующим вектором питающей сети. Математическая основа преобразования координат от неподвижной (αβ) к синхронно вращающейся системе показана ниже.

Рис. 2. Преобразование координат в векторной системе управления

Во вращающейся системе координат вектор тока представлен в виде:

,

где — модуль результирующего вектора

Если принять, что и — соответственно активная и реактивная составляющие обобщенного вектора сетевого тока и система синхронизирована относительно сетевого напряжения, то получаем систему уравнений:

Читать еще:  Акт индивидуального испытания вентиляционного оборудования

Коэффициент мощности, равный единице, в такой системе, при условии, что прямое и обратное преобразование синхронизированы по фазе и частоте с напряжением сети, может быть получен при задании . В этом случае справедлива система:

Ниже представлена модель MATLAB/Simulink системы управления, использующей этот принцип.

Рис. 3. Система управления АВН по проекциям обобщенного вектора тока

В этой системе управления блок преобразования координат «XY-ABC» осуществляет преобразование проекций Ix и Iy обобщенного вектора сетевого тока из вращающейся системы координат к трехфазной системе токов iA, iB, iC. Блок релейных регуляторов включает три канала, которые является обеспечивают гармонической формы сетевых токов. Блок управления включением/выключением АВН обеспечивает включение АВН в заданный момент времени.

Рис. 4. Блок преобразования координат

Рис. 5. Блок релейных регуляторов

В ходе моделирования была рассмотрена работа АВН в выпрямительном и инверторном режимах.

Рис. 6. Работа АВН в выпрямительном режиме

Рис. 7. Работа АВН в инверторном режиме

Рис. 8. Графики напряжения и тока фазы С при работе АВН в выпрямительном режиме

Рис. 9. Графики напряжения и тока фазы С при работе АВН в инверторном режиме

В дальнейшем, в рамках магистерской диссертации, будет проведено исследование работы активного выпрямителя напряжения в составе авиационной системы генерирования электрической энергии постоянного тока.

  1. Герман-Галкин С. Г. Matlab & Simulink. Проектирование мехатронных систем на ПК. — СПб.: Корона-ВЕК, 2008. -368 с.
  2. Герман-Галкин С. Г. Виртуальные лаборатории полупроводниковых систем в среде Matlab-Simulink. Учебник. -СПб.: Лань, 2013. -448 с.
  3. Шрейнер Р. Т. Математическое моделирование электроприводов переменного тока с полупроводниковыми преобразователями частоты. — Екатеринбург: УРО РАН, 2000. — 653с.
  4. Ефимов А. А. Активные преобразователи в регулируемых приводах переменного тока / А. А. Ефимов, Р. Т. Шрейнер. — Новоуральск: НГТИ, 2001. — 250 с.
  5. Ефимов А.А Математическое моделирование и испытания опытного образца активного выпрямителя напряжения / Ефимов А.А, Базарнов А. А., Глухов В. А., Зиновьев Г. С. — Красноярск: Сиб. Федер. Университет. ИКИТ, 2013. — С. 128- 134

Похожие статьи

Преобразования переменных в системах координат a, b, c и α, β

прямое преобразование координат, задание матрицы, система уравнений, система координат, график напряжений, вид матрицы, математическая модель, матричная форма, обратное преобразование координат.

Исследование системы векторного управления.

Такой системой координат является система координат, вращающаяся с частотой поля статора двигателя о, то есть система координат (u — v) [4]. Если динамическая модель асинхронного двигателя выполнена в системе координат (u — v), вычисление модуля вектора.

Пространственные векторы в асинхронном двигателе

– неподвижная система координат статора ( ); — система координат, связанная с ротором, — угол сдвига системы координат R по отношению к S, причем .

. Для системы координат вращающейся с произвольной скоростью система уравнений

Обзор алгоритмов управления асинхронными электроприводами

Система управления скоростью (позицией) вращения асинхронного двигателя в косвенной форме. Рис. 2. Система управления позицией ротора косвенным методом.

Блоки (ejρr) и (2→3) осуществляют трансформацию координат из вращающейся системы в фиксированную.

Моделирование системы АИН ШИМ – АД с переменными ψr — Is.

Рис. 6. Напряжения на входе первой ступени прямого преобразования координат.

Математическая модель этих уравнений в Simulink-Matlab дана на рис. 7. Рис. 7. Первая ступень прямого преобразования координат «abc → αβ».

Моделирование САР скорости системы «АИН ШИМ – АД».

Обратные преобразователи координат по статорным токам с номерами 15 и 16 на

Рис. 26. Обратное преобразование (2-я ступень): isα, isβ → isa, isb, isc.

Шрейнер Р.Т. Системы подчиненного регулирования электроприводов: учеб. пособие / Р.Т. Шрейнер.

Моделирование системы АИН ШИМ – АД с переменными во.

Рис. 6. Напряжения на входе первой ступени прямого преобразования координат.

Математическая модель этих уравнений в Simulink-Matlab дана на рис. 7. Рис. 7. Первая ступень прямого преобразования координат «abc → αβ».

Быстрый метод пространственно-векторной широтно-импульсной.

Напряжение переменного тока зависит от двух параметров: амплитуды и частоты.

Первая коррекция вектора опорного напряжения.

Метод синтеза гибридных систем адаптации.

Применение вейвлет-преобразования для идентификации.

Собрав имитационную модель узла нагрузки системы электроснабжения в Matlab и Simulink. Используя литературу [2]. Снимем с показаний осциллографа графики токов и напряжений, которые представлены на рисунке 4.

Однофазные выпрямители — схемы и принцип действия

Выпрямитель — это устройство, предназначенное для преобразования входною переменного напряжения в постоянное. Основным блоком выпрямителя является вен пильный комплект, который непосредственно выполняет преобразования переменного напряжения в постоянное.

При необходимости согласования параметров сети с параметрами нагрузки, выпрямительный комплект подключается к сети через согласующий трансформатор. По числу фаз питающей сети выпрямители бывают однофазные и трехфазные. Подробнее смотрите здесь — Классификация полупроводниковых выпрямителей. В этой статье рассмотрим работу однофазных выпрямителей.

Однофазный однополупериодный выпрямитель

Простейшей схемой выпрямителя является однофазный однополупериодный выпрямитель (рис. 1).

Рис. 1. Схема однофазного управляемого однополупериодного выпрямителя

Диаграммы работы выпрямителя на R- нагрузку показаны на рисунке 2.

Рис. 2. Диаграммы работы выпрямителя на R-нагрузку

Для того, чтобы открыть тиристор, необходимо выполнение двух условий:

1) потенциал анода должен быть выше потенциала катода;

2) на управляющий электрод должен быть подан открывающий импульс.

Для данной схемы одновременное выполнение этих условий возможно лишь в положительные полупериоды питающего напряжения. Система импульсно-фазового управления ( СИФУ ) должна формировать открывающие импульсы лишь в положительные п олунериоды питающего напряжения.

При подаче на тиристор VS1 открывающего импульса в момент времени θ = α тиристор VS1 открывается и к нагрузке прикладывается напряжение питания U 1 в течение оставшейся части положительного полупериода (прямое падение напряжения на вентиле Δ U в пренебрежимо мало по сравнению с напряжением U 1 ( Δ U в = 1 — 2 В )). Поскольку нагрузка R — активная, то ток в нагрузке повторяет форму напряжения.

В конце положительного полупериода ток нагрузки i и вентиля VS1 уменьшатся до нуля ( θ = n π) , а напряжение U 1 изменит свой знак. Таким образом, к тиристору VS1 прикладывается обратное напряжение, под действием которого он закрывается и восстанавливает свои управляющие свойства.

Такая коммутация вентиля под действием напряжения источника питания, периодически изменяющего свою полярность, называется естественной .

Из диаграмм видно, что изменение а приводит к изменению части положительного полупериода, в течение которого напряжение питания приложено к нагрузке, и, следовательно, это приводит к регулированию потребляемой мощности. Угол α характеризует задержку момента открывания тиристора по отношению к моменту его естественного открывания и называется углом открывания (управления) вентиля .

ЭДС выпрямителя и ток представляют собой следующие друг за другом отрезки положительных полусинусоид, постоянных по направлению, но непостоянных по величине, т.е. выпрямленные ЭДС и ток имеют периодический пульсирующий характер. А каждую периодическую функцию можно разложить в ряд Фурье:

где Е — постоянная составляющая выпрямленной ЭДС, en( t ) — переменная составляющая, равная сумме всех гармонических составляющих.

Таким образом, можно считать, что к нагрузке приложено постоянная ЭДС искаженная переменной составляющей en(t). Постоянная составляющая ЭДС Е является основной характеристикой выпрямленной ЭДС.

Процесс регулирования напряжения на нагрузке путем изменения называется фазовым регулированием . Данная схема имеет ряд недостатков:

1) высокое содержание высших гармонических в выпрямленной ЭДС;

2) большие пульсации ЭДС и тока;

3) прерывистый режим работы схемы;

4) низкий коэффициент использования схемы по напряжению ( k схе =0,45).

Режимом прерывистого тока работы выпрямителя называется такой режим, при котором ток в цепи нагрузки выпрямителя прерывается, т.е. становится равным нулю.

Однофазный однонополупериодный выпрямитель при работе на активно-индуктивную нагрузку

Временные диаграммы работы однополупериодного выпрямителя на RL-нагрузку представлены на рис. 3.

Рис. 3. Диаграммы работы однополупериодного выпрямителя на RL-нагрузку

Для анализа процессов, протекающих в схеме, выделим три интервала времени.

3. π 5R, где ωп — круговая частота пульсаций на выходе выпрямителя. При выполнении данного условия ошибка в расчётах незначительна и может не приниматься во внимание.

Временные диаграммы работы однофазного мостового выпрямителя на активно-индуктивную нагрузку представлены на рис. 9.

Рис. 9. Диаграммы работы однофазного мостового выпрямителя при работе на RL-нагрузку

Для рассмотрения процессов, протекающих в схеме, выделим три участка работы.

1. α . Схема замещения, соответствующая этому интервалу, приведена на рис. 10.

На рассматриваемом интервале энергия из сети преобразуется в тепловую в сопротивлении R, а часть накапливается в электромагнитном поле индуктивности.

Ссылка на основную публикацию
Adblock
detector