Активно индуктивный характер нагрузки

Особенности активно-емкостной нагрузки

В этой статье подробно рассмотрены три основных типа потребляемой мощности, которые используются в бытовых приборах и автомобилях.

Что это такое

Первым делом необходимо узнать, что такое активная энергия. Эта величина, расходуемая нагрузкой в обычном сопротивлении. Это относится к нагревательный устройствам (чайники, электрические камины, микроволновые печи и прочее). Расходуемая мощность данных устройств полностью активная. В таким устройствах используемая энергия навсегда и полностью трансформируется в другую группу энергии.

Мощность указывается символом P и обозначается в Ваттах (Вт).

Чтобы найти эту величину, необходимо воспользоваться формулой:

В таком случае работа будет выполняться без изменений.

В цепях с переменным напряжением есть только активная энергия, потому что показатели мгновенной и средней мощности там сходятся.

Индуктивная работа — через нее проходит сила тока и отстает от напряжения. В результате будет расходоваться реактивная энергия.

Для примера, такая нагрузка используется в асинхронных двигателях, датчиках холостого хода, реакторах, трансформаторов тока, выпрямителях и прочих преобразователях.

Откуда появляется

Образование названия «реактивная мощь» относится к необходимости выделения энергии, которая расходуется нагрузкой, с формированием электромагнитных полей.

Этот компонент используется при индуктивном типе. Например, во время подсоединения электрических двигателей. Все бытовые приборы, а также некоторые промышленные и сельскохозяйственные объекты используют данный тип нагрузки.

В электроцепях, когда работа будет активного вида, то внутри ток не отстает от показателей напряжения. Если энергия будет индуктивного вида, то ток будет запаздывать в отличии от напряжения. При емкостной, ток будет идти быстрее напряжения. Ниже подробно разобраны три типа работ, а также сфера их применения.

Виды энергии

Ниже представлены основные виды нагрузок, которые используются в повседневной жизни. Они могут быть как в бытовых приборах, как и в различных двигателях или датчиках.

Для данной работы используется закон Ома, который выполняется в каждую секунду времени и схож с правилом для переменного тока. Такой тип применяется в лампах для освещения или в электроплитах.

Этот вид превращает в течении определенного времени энергию электрического тока в электрополе, а далее превращает ее в электрический ток. А также, здесь сила тока будет опережать напряжение.

В качестве примера может быть конденсатор. К сожалению, встретить полные реактивные нагрузки невозможно ни в одном приборе. Каждый вид не имеет коэффициент полезного действия 100%, потому что существуют потери энергии в воздухе и прочее. Потому чаще всего используется название активно-реактивной работы.

Индуктивная

Данный вид превращает энергию в магнитное поле, а далее меняет ее в электрический ток. Сила тока в этом случае будет отставать от напряжения. Для примера можно взять индуктивную катушку или датчик дросселя на автомобиле.

Как влияют нагрузки на функционирование выпрямителей и напряжение в цепи

В любой цепи выпрямителя, нагрузка будет иметь исключительно активное сопротивление.

На практике такие приборы достаточно редко функционируют на полном активном сопротивлении, потому что в большинстве вариантов их оснащают электрическими элементами, содержащими индуктивные и емкостные части.

Бывает, что работа содержит части с индуктивной мощностью (обмотки реле, дроссельные заслонки и так далее). Также выпрямители могут спокойно функционировать на встречной электродвижущей силе, например при зарядке АКБ для автомобилей. Также мощность может быть смешанного вида, в которой есть все три параметра.

Емкостная и индуктивная нагрузка чаще всего встречаются в повседневной жизни и бытовых приборах.

На предприятиях также устанавливают конденсаторные установки, потому что они обладают рядом плюсов:

  • уменьшение расходов электрической энергии;
  • уменьшение расходов на ремонт и обслуживание промышленных приборов;
  • сдерживание шумов в сети;
  • снижение искажения фаз;
  • увеличение возможности сети электроснабжения, благодаря чему можно подсоединять электрические приборы без увеличения стоимости питания;
  • уменьшение сопротивления в сети;
  • снижение уровня высокочастотных помех.

Данные установки достаточно дорого стоят, поэтому нет смысла использовать их в квартирах, домах или небольших офисах.

В заключении необходимо отметить, что такие нагрузки необходимо знать для того, чтобы правильно рассчитать мощность каких-либо приборов. Помимо всех перечисленных типов, существуют также резистивные и активные. Информацию о них можно найти на соответствующих форумах по электрике.

Работа выпрямителей на нагрузку различного характера

В предыдущем параграфе рассмотрена работа различных схем выпрямления с неуправляемыми и управляемыми вентилями на нагрузку с чисто активным сопротивлением. В практике, наряду с чисто активной нагрузкой для силовых выпрямителей, часто встречается смешанная активно-индуктивная нагрузка и нагрузка на встречную ЭДС. Примерами таких нагрузок являются обмотки электрических машин и катушки электроаппаратов, а также любые другие электроприемники, питаемые от выпрямителя через фильтр, входным элементом которого служит индуктивная катушка. Случаям нагрузки на встречную ЭДС соответствует работа выпрямителя на якорь двигателя постоянного тока, а также при зарядке от выпрямителя аккумуляторных батарей.

Читать еще:  Lg 50pw451 нет изображения

Работа выпрямителя на активно-индуктивную нагрузку (рис. 3.15, а) отличается от работы на чисто активную нагрузку тем, что ток в цепи выпрямления, возникнув в момент открывания вентиля, нарастает медленнее, чем происходит увеличение напряжения. Это связано с наличием индуктивности Ld в цепи нагрузки, которая является в электрической цепи инерционным элементом, препятствующим резкому изменению тока id. Когда напряжение вторичной обмотки трансформатора начнет снижаться, ток в нагрузке будет

Рис. 3.15. Однополупериодное выпрямление при активно-индуктивной

а — схема включения; бив — временные диаграммы некоторое время продолжать расти и далее постепенно спадать за счет энергии, запасенной в индуктивности (рис. 3.15, б).

Протекание тока через вентиль будет происходить и в течение некоторой части отрицательного полупериода вторичного напряжения за счет положительной ЭДС самоиндукции, возникающей в индуктивности Ld при уменьшении тока нагрузки, которая компенсирует отрицательное напряжение U2 и падение напряжения ud в цепи выпрямления.

Общая продолжительность X протекания тока через вентиль VD зависит от значения индуктивности Ld, с увеличением которой возрастает длительность протекания тока id. Среднее значение выпрямленного напряжения на активно-индуктивной нагрузке UdR_L однополупериодного выпрямителя будет меньше, чем напряжение UdR при активной нагрузке (рис. 3.15, в).

Пульсации тока id в нагрузке не уменьшаются даже при значительном увеличении индуктивности Ld, так как ток ib всегда меняется от нуля до Ib тах. Вследствие этого в однополупериодных выпрямителях в качестве фильтра индуктивность не применяется.

При двухпопупериодном выпрямлении (рис. 3.16, а) в отличие от чисто активной нагрузки ток id в цепи Ld R становится более сглаженным (рис. 3.16, б). Действительно, ток im в вентиле VD1 к концу положительного полупериода под воздействием индуктивности не спадет до нуля, а в момент (я; 2тг; Зтг) ток нагрузки переходит к вентилю VD2.

Указанный переход тока происходит мгновенно, так как в анодных цепях вентилей VD1 и VD2 нет индуктивностей. В следующий полупериод, когда im будет опять положительно, ток id снова переходит к вентилю VDI (рис. 3.16, в).

Выпрямленное напряжение ud на выходе выпрямителя, т.е. напряжение на зажимах всей цепи RL нагрузки, и обратное напряжение на вентиле будут иметь такую же форму, как при работе схемы на активную нагрузку. Это объясняется тем, что переход тока с одного вентиля на другой происходит в те же моменты, что и в случае работы схемы без индуктивности Ld.

Влияние индуктивности в цепи нагрузки сказывается на действующих значениях токов, протекающих в вентилях и обмотках, а также на типовой мощности трансформатора Т.

Процессы в схеме управляемого выпрямителя при работе его на активно-индуктивную нагрузку отличаются от процессов при работе

Рис. 3.16. Двухпопупериодное выпрямление при активно-индуктивной

а — схема включения; бив — временные диаграммы

схемы на активную нагрузку. Пусть однофазная мостовая схема (рис. 3.17, а) работает с идеально сглаженным током id (Ld = 0), тогда тиристоры VS1 и VS3, вступив в работу в момент времени (рис. 3.17, б), не закроются в момент прохождения фазного напряжения м2 через нуль (момент t2), как это было при чисто активной нагрузке, а будут проводить ток при отрицательном напряжении вторичной обмотки до тех пор, пока не будут поданы управляющие импульсы на тиристоры VS2, VS4 (момент t3). Тогда эта пара тиристоров вступит в работу, а тиристоры VS1, VS3 выключаются. Вентили VS2, VS4 будут проводить ток, пока снова не будут поданы управляющие импульсы на тиристоры VS1, VS3 (момент ?3), И т.д.

Рис. 3.17. Работа управляемого однофазного мостового выпрямителя на активно-индуктивную нагрузку: а — схема включения; б, в, г — временные диаграммы

Длительность протекания тока через каждую пару тиристоров остается равной 180°. При Ld = 0 ток id в цепи нагрузки идеально сглажен, а токи тиристоров имеют форму прямоугольных импульсов с амплитудой, равной Id (рис. 3.17, в).

В кривой выпрямленного напряжения ud в интервалах времени 0—?; —Н и т,д — появляются участки отрицательного напряжения, когда ток через тиристор и нагрузку проходит под действием ЭДС самоиндукции, возникающей в индуктивности Ld (рис. 3.17, г).

Это вызывает снижение среднего значения выпрямленного напряжения Ud. Очевидно, что с ростом угла а площадь отрицательных участков увеличивается, а значение Ud будет уменьшаться. Среднее значение выпрямленного напряжения в этом случае может быть определено для всего диапазона изменения угла а по следующей формуле:

Это выражение справедливо для всех управляемых схем при работе выпрямителя со сглаженным (непрерывным) током. Предельным углом регулирования, при котором в выпрямленном напряжении ud положительные и отрицательные участки равны между собой и постоянная составляющая отсутствует, т.е. Ud = 0, является угол а = тг/2.

Может случится так, что энергии запасенной в индуктивности Ld на интервале, когда ud > 0, оказывается недостаточно для обеспечения протекания тока id в течение половины периода, и вентиль, проводящий этот ток, выключится раньше, чем будет подан отпирающий импульс на следующий по порядку работы вентиль, т.е. раньше момента, определяемого углом а. Такой режим работы схемы при активно-индуктивной нагрузке называется режимом с прерывистым выпрямленным током.

Читать еще:  Аккумуляторный секатор makita dup361z

Что такое реактивная мощность? Компенсация реактивной мощности. Расчет реактивной мощности

В квартирах и частных домах установлен один электросчетчик, по которому производится расчет оплаты за потребленную энергию. Упрощенно считается, что в быту используется только ее активная составляющая, хотя это не совсем так. Современное жилище насыщено устройствами, в схемах которых присутствуют элементы, сдвигающие фазу. Однако реактивная мощность, которую потребляют бытовые приборы, несравнимо меньше, чем у промышленных предприятий, поэтому при расчете оплаты ею традиционно пренебрегают.

Завод или фабрика, руководство которых не следит за расходом паразитных токов, проходящих по цепи нагрузки, наносит большой вред энергосистемам региона и страны в целом. Совершенно бесполезно нагревается атмосферный воздух вокруг ЛЭП; обмотки трансформаторов, установленных в подстанциях, могут не выдерживать нагрузки, особенно в пиковые периоды.

Нагрузка индуктивная и емкостная

Если взять обычный нагревательный прибор или электрическую лампочку, то мощность, указанная в соответствующей надписи на колбе или табличке-шильдике, будет соответствовать произведению величин тока, проходящего через это устройство, и напряжения сети (у нас это 220 Вольт). Ситуация меняется, если прибор содержит трансформатор, другие элементы, содержащие катушки индуктивности, или конденсаторы. Эти детали обладают особыми свойствами, график протекающего в них тока отстает или опережает синусоиду питающего напряжения — другими словами, происходит сдвиг фазы. Идеальная емкостная нагрузка сдвигает вектор на -90, а индуктивная — на +90 градусов. Мощность в этом случае становится результатом не только произведения тока на напряжение, добавляется некий поправочный коэффициент. К чему это приводит?

Геометрическое отражение процесса

Из школьного курса геометрии всем известно, что гипотенуза длиннее любого из катетов в прямоугольном треугольнике. Если активная, реактивная и полная мощность образуют его стороны, то токи, потребляемые катушкой и емкостью, будут находиться под прямым углом к резистивной составляющей, но с направлениями в противоположные стороны. При сложении (или, если угодно, вычитании, они разнознаковые) величин суммарный вектор, то есть полная реактивная мощность, в зависимости от того, какой характер нагрузки преобладает в схеме, будет направлен вверх или вниз. По его направлению можно судить, какой характер нагрузки преобладает.

Реактивная мощность при векторном сложении с активной составляющей даст полную величину потребляемой мощности. Она графически изображается как гипотенуза треугольника мощности. Чем более эта линия будет полого располагаться по отношению к оси абсцисс, тем лучше.

Косинус фи

На графике видно, что угол φ образуют два вектора, полной и активной мощности. Чем их величины меньше отличаются, тем лучше, но полному их слиянию мешает реактивная мощность, считающаяся паразитной. Чем больше угол, тем выше нагрузка на линии электропередач, повышающие и понижающие трансформаторы системы энергоснабжения, и наоборот, чем ближе вектора наклонены друг к другу, тем меньше будут греться провода на всем протяжении цепи. Естественно, что с этой проблемой что-то нужно было делать. И решение нашлось, простое и изящное. Взаимная компенсация реактивной мощности позволяет уменьшить угол φ и максимально приблизить его косинус (который также называют коэффициентом мощности) к единице. Для этого следует удлинить вектор емкостной составляющей так, чтобы добиться резонанса токов, при котором они «погасят» друг друга (в идеале полностью, а на практике — наибольшим образом).

Теория и практика

Все теоретические выкладки имеют ценность тем большую, чем применимее они на практике. Картина на любом развитом промышленном предприятии следующая: большая часть электроэнергии потребляется двигателями (синхронными, асинхронными, однофазными, трехфазными) и прочими машинами. А ведь есть еще и трансформаторы. Вывод простой: в реальных производственных условиях преобладает реактивная мощность индуктивного характера. Следует отметить, что на предприятиях устанавливают не один электросчетчик, как в домах и квартирах, а два, один из которых активный, а другой — несложно догадаться какой. И за перерасход напрасно «гоняемой» по линиям электропередач энергии соответствующие органы беспощадно штрафуют, так что администрация кровно заинтересована в том, чтобы произвести расчет реактивной мощности и принять меры к ее снижению. Ясно, что без электрической емкости при решении этой задачи не обойтись.

Компенсация по теории

Из приведенного графика вполне ясно, как добиться уменьшения паразитных токов вплоть до полного их устранения, по крайней мере, теоретически. Для этого следует параллельно с индуктивной нагрузкой включить конденсатор соответствующей величины емкости. Векторы при сложении дадут ноль, и останется только полезная активная составляющая.

Расчет производится по формуле:

  • C = 1 / (2πFX), где X – полное реактивное сопротивление всех включенных в сеть устройств; F – частота напряжения питания (у нас – 50 Hz);

Вроде бы — чего проще? Перемножить «X» и число «пи» на 50 да поделить. Однако все несколько сложнее.

Читать еще:  Ekf ад 2 схема подключения

А как на практике?

Формула несложна, но определить и рассчитать X не так-то просто. Для этого нужно взять все данные об устройствах, узнать их реактивное сопротивление, причем в векторном виде, и уже тогда… На самом деле, никто этим не занимается, кроме студентов на лабораторных работах.

Определить реактивную мощность можно и иначе, при помощи специального прибора — фазометра, указывающего косинус фи, или сравнив показания ваттметра, амперметра и вольтметра.

Осложняется дело тем, что в условиях реального производственного процесса величина нагрузки постоянно меняется, так как одни машины в процессе работы включаются, другие, напротив, отключаются от сети, как того требует технологический регламент. Соответственно, необходимы постоянные меры по отслеживанию ситуации. Во время ночных смен работает освещение, зимой в цехах может осуществляться нагрев воздуха, а летом — его охлаждение. Так или иначе, но компенсация реактивной мощности производится на основе теоретических расчетов с большой долей практических замеров cos φ.

Подключая и отключая конденсаторы

Наиболее простой и очевидный способ решить проблему – посадить возле фазометра специального работника, который бы включал или выключал нужное количество конденсаторов, добиваясь минимальной величины отклонения стрелки от единицы. Так вначале и делали, но практика показала, что пресловутый человеческий фактор не всегда позволяет добиваться нужного эффекта. В любом случае компенсация реактивной мощности, имеющей чаще всего индуктивный характер, производится подключением электрической емкости соответствующей величины, но делать это лучше в автоматическом режиме, иначе нерадивый работник может подвести родное предприятие под крупный штраф. Опять же, труд этот квалифицированным назвать нельзя, автоматизации он вполне поддается. Простейшая схема включает оптическую электронную пару из излучателя и приемника света. Стрелка перекрыла минимальное значение – значит, нужно добавить емкости.

Автоматика и интеллектуальные алгоритмы

В настоящее время есть системы, позволяющие надежно удерживать cos φ в пределах от 0,9 до 1. Так как подключение конденсаторов в них происходит дискретно, то идеального результата добиться невозможно, но экономический эффект автоматический компенсатор реактивной мощности все равно дает очень хороший. В основе работы этого прибора лежат интеллектуальные алгоритмы, обеспечивающие работу сразу после включения, чаще всего даже без дополнительных настроек. Технологические достижения в области вычислительной техники позволяют добиваться равномерного подключения всех ступеней конденсаторных батарей для того, чтобы избежать преждевременного выхода из строя одной или двух из них. Время срабатывания также минимизировано, а дополнительные дроссели снижают величину перепада напряжения во время переходных процессов. Современный щит управления питанием предприятия обладает соответствующей эргономической компоновкой, которая создает условия для быстрой оценки оператором ситуации, а в случае аварии или выхода из строя он получит немедленный тревожный сигнал. Цена такого шкафа немалая, но заплатить за него стоит, пользу он приносит.

Устройство компенсатора

Обычный компенсатор реактивной мощности представляет собой металлический шкаф стандартных размеров с панелью контроля и управления на лицевой панели, обычно открываемой. В нижней части его располагаются наборы конденсаторов (батареи). Такое расположение обусловлено простым соображением: электрические емкости довольно тяжелые, и вполне логично стремление сделать конструкцию более устойчивой. В верхней части, на уровне глаз оператора, находятся необходимые контрольные приборы, в том числе и фазоуказатель, при помощи которого можно судить о величине коэффициента мощности. Имеется также различная индикация, в том числе и аварийная, органы управления (включения и выключения, перехода на ручной режим и проч.). Оценку сравнения показаний измерительных датчиков и выработку управляющих воздействий (подключение конденсаторов нужного номинала) выполняет схема, основой которой служит микропроцессор. Исполнительные устройства работают быстро и бесшумно, они, как правило, построены на мощных тиристорах.

Примерный расчет конденсаторных батарей

На относительно небольших предприятиях реактивная мощность цепи может примерно оцениваться по количеству подключенных устройств с учетом их фазосдвигающих характеристик. Так, обычный асинхронный электродвигатель (главный «работяга» фабрик и заводов) при нагрузке, равной половине его номинальной мощности, обладает cos φ, равным 0,73, а люминесцентный светильник – 0,5. Параметр контактного сварочного аппарата колеблется в пределах от 0,8 до 0,9, дуговая печь работает с косинусом φ, равным 0,8. Таблицы, имеющиеся в распоряжении практически каждого главного энергетика, содержат сведения о практически всех видах промышленного оборудования, и предварительная установка компенсации реактивной мощности может производиться при помощи них. Однако такие данные служат лишь базой, на основании которой необходимо вносить коррективы, добавляя или отключая конденсаторные батареи.

В масштабах страны

Может сложиться впечатление о том, что всю заботу о параметрах электросетей и равномерности нагрузки на нее государство возложило на фабрики, заводы и прочие промышленные предприятия. Это не так. Энергосистема страны контролирует сдвиг фаз в общегосударственном и региональном масштабе, прямо на выходе своего особого товара из электростанций. Другой вопрос в том, что компенсация реактивной составляющей осуществляется не подключением конденсаторных батарей, а иным методом. Для обеспечения качества отпускаемой потребителям энергии в роторных обмотках регулируется ток подмагничивания, что в синхронных генераторах не составляет большой проблемы.

Ссылка на основную публикацию
Adblock
detector